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Foreword

The exercise of translating a specified future investment objective into a strategy to be implemented 
in the present requires vision. It necessitates the ability to effectively evaluate today’s opportunities, 
conceptualize the risks that may materialize across an investment horizon, and implement a plan 
to manage those risks over time. It is a process that requires ongoing introspection about the 
preferences for the different risks that come to light as markets evolve and the judgment that must 
be applied when uncertainty prevails.

Invesco’s long history in managing investments and facing the real-world challenges of allocating 
capital across dynamic and volatile markets has afforded us the understanding that investing is about 
making decisions about the trade-offs between the possibility of higher returns and the risks that 
accompany the pursuit of those returns. Our experience has also taught us that those trade-offs 
aren’t always evident. Making the right decisions requires consideration of the right information. 
It is this aspect of investing that led the Invesco Investment Solutions (IIS) group to pursue the 
development of differentiated capabilities focused on supporting the investment decision making 
process. Invesco Vision is the result of our ongoing pursuit of this idea.

IIS’s team of global research professionals, with expertise across a variety of domains (e.g., 
Mathematics, Statistics, Data Science, etc.), has dedicated years of research and effort to 
developing the Invesco Vision portfolio management decision support system. The platform was 
specifically designed around the idea of providing professional investors with the information they 
need to make better informed investing decisions. We created Invesco Vision to allow for more 
productive collaborations with our clients and to support them in most effectively applying their 
judgment in the portfolios they manage. 

We are excited to share an overview of Invesco Vision’s current capabilities with you. However, we 
are steadfast in our commitment to this effort and look forward to advancing Vision as technology, 
markets, and investors evolve.

Gary Wendler
Head of Investment Solutions,
Product Strategy and Investment
Performance & Risk

Nicholas Savoulides, PhD, CFA
Head of Investment Solutions Research
and Portfolio Analytics
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Introduction

When every individual person labours apart, and only for himself, his force is too small to execute any 
considerable work; his labour being employ’d in supplying all his different necessities, he never attains 
a perfection in any art; and as his force and success are not at all times equal, the least failure in 
either of these particulars must be attended with inevitable ruin and misery. Society provides a 
remedy for these three inconveniences. By the conjunction of forces, our power is augmented: By the 
partition of employments, our ability encreases: And by mutual succour we are less expos’d to fortune 
and accidents. ’Tis by this additional force, ability, and security, that society becomes advantageous.

David Hume, A Treatise of Human Nature (1739)

Investment management is about seeking returns in the face of uncertainty. While we cannot control 
uncertainty, we can affect the decisions we make in managing investments. In this context, the role 
of a portfolio manager is to make judgments, informed by experience and relevant information, 
about investments being considered and the uncertainty they present. As a stand-alone exercise, 
this is no small task. However, portfolio managers are increasingly required to be “expert generalists” 
about an expanding array of ideas that are now a part of investment management. Managing 
portfolios entails navigating dynamic and politically charged macro-economic environments, 
evaluating emerging technologies and new approaches to investing, understanding and applying 
advanced quantitative methods, complying with changing regulatory requirements across multiple 
regions, and executing the effective implementation of investment strategy. Arguably, the knowledge 
and skills now demanded of portfolio managers spans a broad array of disciplines that extend well 
beyond the domain of traditional finance. Unfortunately, the informational challenges confronting 
investors today are not likely to subside as the financial markets continue to evolve at an ever-
increasing pace. Consequently, having access to trusted resources for collaboration that can facilitate 
access to relevant information and analytics that supports investing decision making is becoming 
a critical aspect of successful asset management. This is why we created Invesco Vision. 

Invesco Vision is a portfolio management decision support system that provides Invesco’s researchers 
and clients with a broad set of capabilities that allow for the development of insights about the risks 
and trade-offs presented by individual assets and portfolios to support the identification of solutions 
that are best aligned with an investor’s specific preferences. With this system we seek to facilitate the 
application of judgment to investment decisions through collaboration and the effective division of 
labor between human and machine; where judgment (about objectives, approaches/methods to use, 
and about a wider range of considerations than can ever be incorporated into a computer) is left to 
the investor, while computation (of sophisticated algorithms, methods for portfolio optimization, 
and estimates of potential risks and rewards) is left to the machine. Invesco Vision is supported by 
a seasoned group of Investment Solutions Strategists with practical experience and a team of global 
research professionals tasked with the evaluation and development of the methodologies and 
capabilities that are made available through the system. 

The objective of this paper is to provide investors with the necessary detail about the approaches 
and methods incorporated into Invesco Vision. This allows for a common understanding that can 
serve as the basis for effective engagements with our clients in addressing their investment 
challenges. To that end, we have divided the paper into four parts that each provide concise 
descriptions of the methods and techniques used in the system and how they might be applied in 
practice. The first part, Modeling assets and liabilities, provides detail on the development of various 
covariance matrices and how they are used to inform the requisite inputs for risk evaluation and 
portfolio construction. The second part, Portfolio construction, provides information about the 
various portfolio optimization methods available. The third part, Portfolio analytics, explains some 
of the key analytical tools that can be used for both portfolio evaluation and portfolio selection. 
The fourth and final part, Practical application: Case studies, presents fifteen different case studies 
intended to provide simplified examples of how Invesco Vision can be used to address common 
investment challenges. 

By providing information and transparency about how we approach portfolio construction and risk 
management, we hope that this paper can serve as a constructive first step toward establishing 
client partnerships where investing experiences and outcomes are meaningfully improved through 
collaboration. 
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Modeling assets and liabilities

Covariance estimation
Successful investing requires an understanding of asset and market dynamics. For portfolio 
management, the covariance matrix is essentially a model of “how the world works” in that it 
describes both the volatilities of, and the relationships between, investments under consideration. 
This information is central to the development of efficient portfolios and for risk management 
exercises. Unfortunately, developing a model of covariance that quantifies how assets might be 
expected to act in the future is not a simple task. Invesco has expended considerable effort to 
identify a framework that provides relevant information for portfolio construction and risk 
assessment. Our focus was on identifying a multi-factor risk model that provided a high degree 
of flexibility and allowed for the consistent modeling of a broad range of assets. 

Multi-factor risk models generally fall into three main categories: 1) macroeconomic models, 
2) statistical models, and 3) fundamental models. Macroeconomic models are perhaps the most 
simple and intuitive in that they use observable economic time series (e.g., GDP, interest rates, 
inflation, credit spreads, etc.) to explain the returns of, and relationships between, assets. 
Conversely, statistical factor models are substantially less intuitive because they rely on unobservable 
statistical factors, generally derived from a factor analysis or principal components analysis, for 
explanatory purposes. Determining sensitivities, or betas, to either macroeconomic or statistical 
factors is accomplished through time series regression. This is a key limitation for these types of 
models in that the statistically sound estimation of exposures requires long return histories. In many 
instances, sufficiently long historical information is not available and, when it is, it may not reflect the 
evolution of an asset’s characteristics over time. 

Fundamental factor models do not rely on time series regression for estimating sensitivities 
but instead use directly observable asset attributes (e.g., industry, price-earnings ratio, price 
momentum, market capitalization, etc.) to explain returns. These attributes are treated as betas 
which, when combined with risk indices that correspond to the various attributes identified, allow 
for the estimation of asset behavior. While all of these risk models have potential benefits, the 
fundamental risk model provides significant flexibility in practice along with providing for an intuitive 
understanding of the dependence of an asset’s returns on well-defined dependencies. For these 
reasons, we have selected it to model the risks of the global collection of comprehensive asset 
classes that are available for use in Invesco Vision. Rather than embarking on the daunting task 
of developing a proprietary fundamental risk model, Invesco Vision has incorporated BarraOne®, 
which is one of the most recognized and respected risk models available.

Modeling traditional assets
As briefly discussed above, we have chosen a multi-asset fundamental risk factor model to drive our 
risk modeling capabilities. The model is a comprehensive one utilizing over 3,000 factors, including 
factors that span all of the major asset classes across various economies, countries, and industries. 
One of the key benefits of using a factor model is our ability to distill the key performance drivers 
of any security into a smaller set of relevant systematic factors. This means that, in most cases, 
we may need to employ only a small subset of relevant factors for modeling exercises. 

Figure 1 presents the overall structure of the factor covariance matrix. The matrix is comprised of 
four subcomponents: equities, fixed income, commodities, and currencies. Equity factors are further 
subdivided into industry factors and style factors and fixed income factors are further subdivided 
into term structure and spread factors.

Figure 1: Factor-based covariance matrix

Factor covariance matrix
≈3,300 x 3,300 factors
Equity
2380 x 2380 Cross terms determined 

through core factor methodology
Fixed Income
681 x 681

Cross terms determined 
through core factor methodology

Commodities
68 x 68

Currency
158 x 158

Source: Invesco, BarraOne.
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Producing the covariance matrix relies on looking at factor return series and determining their 
variances and covariances. Like most risk models, recent data is weighted more heavily than older data. 
We offer three variants from which to choose as shown in Figure 2 below. Given the strategic nature of 
most of our modeling efforts, we will most frequently leverage the longer half-life covariance matrix.

Figure 2: Covariance matrix time horizon, half-life, and use cases
Variance 
half-life

Covariance 
half-life Use case

Short 90 days 2 years
Best suited for tactical positioning

Medium 1 year 3 years

Long 8 years 8 years Best suited for strategic asset allocation

Source: Invesco, BarraOne

With a covariance matrix defined, any security or fund can then be modeled through its factor 
exposures and specific (or idiosyncratic) risk estimates. Figure 3 shows this information for three 
example securities: a US equity, a EUR denominated bond, and a commodity futures contract. 
For the US equity example, we can see that the US software firm stock has 100% exposure to the 
US Software industry factor and additional exposures to a variety of equity style factors which are 
measured in terms of z-scores. The risk of this stock can then be modeled based on its factor 
exposures and the underlying factor covariance matrix. Modeling the risk characteristics of portfolios 
comprised of multiple assets employs the same information.

Figure 3: Sample equity, bond, and commodity future factor exposures (as of 8/31/2018)

Equity: US Software firm Bond: European financial firm 41/8 
1/14/20

Future: Crude Oil Dec 18

Equity industry Term Structure Commodity

US Software 100% EUR Shift
EUR Twist
EUR Butterfly

1.34
-2.23
1.62

Commodity crude oil shift
Commodity crude oil twist
Commodity crude oil butterfly

0.96
0.64
0.17

Equity style Spread

US beta
US Non-linear beta
US Residual volatility
US Book-to-price
US Earnings yield
US Dividend yield
US Momentum
US Leverage
US Size
US Non-linear size
US Liquidity
US Growth

1.26
-1.12
-0.74
-0.63
-0.35
-0.14
0.92

-0.26
1.03

-0.53
-0.94
-0.20

EUR Swap shift
EUR Swap twist
EUR Swap Butterfly
EUR Financials A

1.34
-2.63
0.23
1.33

Currency Currency

USD 100% EUR 100%

Specific Risk 10.1% Specific Risk 0.2% Specific Risk 1.4%

Source: Invesco, BarraOne.

• Holdings-Based Analysis
When the security level holdings of a portfolio are available, we will rely on holdings-based
analysis. In this approach, every asset is individually modeled and translated into a set of factor
exposures and specific risk estimates, just like the example above. By aggregating the underlying
asset exposures, we are then able to effectively model the overall portfolio behavior.

• Returns-Based Analysis
In cases where we do not have information about the underlying portfolio constituents and
cannot employ holdings-based analysis, we will proceed with returns-based analysis. In this
situation, we rely on the fund’s historical returns as well as some high-level fund characteristics,
such as asset class, style, and region. We then use a returns-based model to estimate the fund’s
factor exposures. To do this, a finite set of stylized factor portfolios are employed. The use of
stylized portfolios helps address the mismatch between the limited number of historical return
data points and the large number of factors in the model. Invesco Vision’s model already covers
thousands of assets through both holdings- and returns-based analyses. Users can also model
a fund on an ad hoc basis using its returns and relevant characteristics.
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Modeling alternative assets
Alternative investments can exhibit unique characteristics that can prove beneficial to achieving 
desired portfolio outcomes. Given their illiquid nature, modeling alternatives presents additional 
challenges. Generally, de-smoothing techniques that blend private and public factors to achieve 
more representative risk characteristics must be applied. Figure 4 presents the structure of the 
factor covariance matrix with alternative factors included. Detail on specific approaches used for 
modeling various alternative assets follows.

Figure 4: Factor-based covariance matrix including alternative factors

Factor covariance matrix
≈3,700 x 3,700 factors

Equity
2380 x 2380

Cross terms determined 
through core factor methodology

Fixed Income 
681 x 681

Commodities 
68 x 68

Currency 
158 x 158

Cross terms determined 
through core factor methodology

Real Estate 
431 x 431

Private Equity* 
17 x 17

Hedge Funds* 
9 x 9

* Private equity and hedge fund assets get exposure to both traditional asset factors as well as the indicated private factors 
which are uncorrelated to any other factors.  
Source: Invesco, BarraOne.

• Real Estate 
For private real estate, we model each property based on its property type, subtype, and region. 
In total, there are 431 real estate factors as shown in Figure 5. Bayesian de-smoothing techniques 
that include both public and private data are employed to address issues with infrequent, lagged, 
and non-subjective valuations. When estimating factor exposures, adjustments should consider 
leverage as indicated by the loan-to-value (LTV) ratio. Furthermore, additional empirical 
adjustments are made to account for the different behavior of value-add and opportunistic type 
holdings relative to core holdings. Finally, a specific risk model is also used to capture the 
idiosyncratic nature of individual holdings.

• Private Equity and Debt 
Similar to the real estate model, de-smoothing techniques are employed. However, in this case, 
assets are assigned exposure to both public and private factors. There is also flexibility to define 
the public factors to which an asset may be exposed. This allows us, for example, to model a US 
Technology Buyout fund differently than a European Consumer Cyclical Buyout fund. There are 
a total of 17 private factors that are delineated by fund type and region as shown in Figure 6.
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Figure 5: Private real estate factors 
Factor matrix shows number of unique regional factors by property type 
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Australia 5 1 1 3 1 1 1  –  –  –  –
Austria 3 1 1 1 1 1 1  –  –  –  –
Belgium 4 1 1 1 1 1 1  –  –  –  –
Canada 5 1 5 2 1 1 1  –  –  –  –
China 1 1 1 1 1 1 1  –  –  –  –
Czech Republic 1 1 1 1 1 1 1  –  –  –  –
Denmark 8 3 1 1 1 1 1  –  –  –  –
France 6 4 1 1 1 1 1  –  –  –  –
Germany 8 1 2 1 1 1 1  –  –  –  –
Hong Kong 1 1 1 1 1 1 1  –  –  –  –
Hungary 1 1 1 1 1 1 1  –  –  –  –
Indonesia 1 1 1 1 1 1 1  –  –  –  –
Ireland 3 1 5 3 1 1 1  –  –  –  –
Italy 5 1 1 1 1 1 1  –  –  –  –
Japan 7 4 3 1 1 1 1  –  –  –  –
Korea 5 2 2 2 1 1 1  –  –  –  –
Malaysia 1 1 1 1 1 1 1  –  –  –  –
Netherlands 4 4 4 4 1 1 1  –  –  –  –
New Zealand 2 2 2 2 1 1 1  –  –  –  –
Norway 8 1 1 1 1 1 1  –  –  –  –
Poland 1 1 1 1 1 1 1  –  –  –  –
Portugal 6 1 1 2 1 1 1  –  –  –  –
Singapore 1 1 1 1 1 1 1  –  –  –  –
South Africa 3 1 1 1 1 1 1  –  –  –  –
Spain 5 1 1 1 1 1 1  –  –  –  –
Sweden 6 4 1 1 1 1 1  –  –  –  –
Switzerland 6 6 2 1 1 1 1  –  –  –  –
Taiwan 1 1 1 1 1 1 1  –  –  –  –
Thailand 1 1 1 1 1 1 1  –  –  –  –
United Kingdom 5 1 3 3 1 1 1 16  – 1 1
United States 4 4 4 4 1 1 1 15 17 11 4

Source: Invesco, BarraOne.

Figure 6: Private equity factors

Fund type US Europe Asia

Large buyout √ √ √

Small buyout √ √ √

Early stage venture √ √ √

Late stage venture √ √ √

Distressed √ √ √

Mezzanine √ √ –

Source: Invesco, BarraOne.

• Hedge Funds 
Hedge funds are possibly the hardest of investment types to model. This should be expected 
as they are very idiosyncratic by nature. Hedge funds are always modeled using returns-based 
analysis. As a first step, it is necessary to define the hedge fund strategy type. Based on this, 
a regression is performed against a set of relevant public factors. For a subset of strategies, 
a hedge fund specific factor is also included in the regression. For example, a merger arbitrage 
hedge fund will be regressed against the relevant region MSCI IMI index factors, the size factor, 
as well as a hedge fund “event driven” factor. Figure 7 presents the available hedge fund 
strategies and corresponding hedge fund and public factors used for modeling exercises.
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Figure 7: Hedge fund factors

Hedge Fund Strategy Hedge Fund Factor
Public Factor (exposure driven by user input, 
historical fund returns and region)

Long/Short Equity  – MSCI IMI; Style factors; Currency factors

Dedicated Short Bias Equity  – MSCI IMI; Style factors; Currency factors

Long/Short Credit  – High Yield; Term structure factors; EM credit spread 
factors

Equity Market Neutral Equity Market Neutral MSCI IMI; Style factors

Merger Arbitrage Event Driven MSCI IMI; Size factor

Event Driven Multi-Strategy Event Driven MSCI IMI; Size factor

Distressed Securities Event Driven MSCI IMI; High Yield; Size factor

Convertible Arbitrage Convertible Arbitrage MSCI IMI; High Yield

Fixed Income Arbitrage Fixed Income Arbitrage High Yield; Term structure factors; EM Credit Spread 
factors

Global Macro Global Macro MSCI IMI; Currency factors

Managed Futures Managed Futures MSCI IMI; Dollar Index; Currency factors

Fund of Hedge Funds Event Driven, Global Macro, 
Managed Futures

MSI IMI; Style factors; High yield; EM credit spread 
factors 

Source: Invesco, BarraOne.

• Custom alternative assets: 
While the approaches above can be used to model many alternative assets, there are cases 
that require more customized modeling. For example, how do we model private infrastructure? 
How about private commercial real estate debt? While it can be difficult to model these private 
assets without introducing additional factors, we make the best effort to represent them using 
the available factors. Given the lack of transparency, limited data, and possible lack of perfect 
mark-to-market pricing, we choose to keep these modeling exercises as simple as possible. 
 
For example, for fixed income like alternative assets we may consider rate exposures, credit 
exposures, and other private factor exposures. Rate exposure is dictated by the nature of the 
debt. Floating rate debt receives no rate exposure while fixed rate debt includes exposure to the 
relevant curve shift and twist factors based on the asset’s maturity. For credit and private factor 
exposure, we qualitatively decide which factors are the most relevant. Once we select the factors, 
we set exposures such that the modeled risk is aligned with our best estimate of the risk of the 
asset. Finally, the distribution of risk between the public credit and private factors can take on 
three possible values: 25/75, 50/50, or 75/25. The split is selected through an evaluation of 
historical correlations with the overall equity and debt markets. In Figure 8 we present examples 
of various alternative assets and how they might be modeled.

Figure 8: Sample alternative asset factor exposures

Core office building
Boston (LTV = 25%)

Private equity
large buyout fund

Event driven
hedge fund

Infrastructure
fixed debt

Real Estate Equity Industry Equity Industry Term Structure

US Office east 133% US Aerospace & Defense 3.1% US Aerospace & Defense 0.8% US Shift 10.0

US Income return 133% US Banks 8.5% US Banks 1.3% US Twist 6.8

US Boston 133% US Biotech life sciences 4.7% US Biotech life sciences 1.0%

US Computer electronics 5.2% US Computer electronics 2.2%

US Diversified financials 5.9% US Diversified financials 2.8%

US Health care equipment 
and technology

3.5% US Health care equipment 
and technology

1.5%

... ...
Total 120% Total 30.5%

Equity Style Spread

US Size -0.02% US Swap shift 10.0

US Utilities BBB 5.1

Private Hedge fund Private

US PE large buyout 100% Pure event driven 73% US PE mezzanine 35%

Currency Currency Currency Currency

USD 100% USD 100% USD 100% USD 100%

Specific risk 8.4% Specific risk 2.1% Specific risk 1.3% Specific risk –

Source: Invesco, BarraOne.
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Modeling liabilities
Defeasing a set of liabilities is a common objective for asset managers. Defined benefit plans are 
managed to support pension liabilities. Insurance companies are managed to meet expected claims. 
Even retail investors invest with the objective of paying for their future needs. In all these cases, 
effectively modeling the underlying liabilities is critical.

In order to model a liability stream there are two key ingredients:

1. A cash flow schedule
2. A discount curve

While cash flow schedules are rarely known with certainty, we assume that they are best modeled 
by the asset owner and as result we treat them as deterministic. For the discount curve we rely on 
an array of built-in curves based on specific liability characteristics. For nominal cash flows we use 
nominal yield curves. For inflation adjusted cash flows we use real yield curves. Some curves are 
based on sovereign rates, others on swap rates, and yet others are based on corporate rates. Figure 
9 lists examples of the discount curves used for different types of liabilities:

Figure 9: Liability discount curve variants

Liability type 
Example 

curve
Sovereign 

nominal
Sovereign 

real
Swap 

spread Credit
US Corporate Pension Citi AA √ √ √
UK Inflation-linked liability Indexed Gilt Curve √
European Insurer EIOPA EUR √ √

Source: Invesco, Citigroup, AA Pension discount curve, Bloomberg, EIOPA Solvency II discount curve.

The key aspect of modeling any liability stream is understanding how its present value will react to 
changes in market conditions. More specifically, we need to translate the liability stream into a set of 
factor exposures just like those for assets. To do this, we model the liability as if it were a bond with 
unequal interest payments. Typically, the largest risk entailed in a set of liabilities is interest rate risk 
– i.e., the impact of interest rate movements on its present value. To better understand this risk, we 
compute the impact of various interest rate shocks. The shocks we choose to examine are identical 
to the ones we use when we evaluate the interest rate risk of our bond assets. More specifically, we 
compute key rate durations at a set of pre-specified key rate points. This is a standard approach that 
entails re-valuing the liabilities based on “hut like” linear dislocations of the interest rate curve as 
shown below:

Figure 10: Key-rate duration calculation methodology
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Source: Invesco, BarraOne.

The exercise requires attention to detail. For example, are we looking for spot key rate durations 
or par key rate durations? Or does the curve entail a credit component or is it entirely based on 
a sovereign or swap curve? Seemingly small differences can meaningfully impact the resulting 
analytics and could lead to unnecessary model risk.
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For curves that entail a credit component, such as the FTSE pension discount curve, there 
is the additional challenge of credits migrating into and out of the curve. To model these types 
of curves there are several options of varying sophistication that can be employed. Given that 
we are generally managing multi-asset portfolios, where even small exposures to growth assets may 
dominate risk, we follow a straightforward approach. Specifically, we model the credit portion of the 
discount curve using a generic AA corporate spread factor and set the exposure level to be equal to 
the overall duration of the liability stream.1

Regulatory risk models
Invesco Vision also allows insurance entities operating in either the Solvency II framework or the 
NAIC framework to develop capital-efficient investment portfolios. Depending on the regulatory 
jurisdiction, insurers must set aside capital as a cushion to protect against adverse movements 
in their asset portfolios. Each of these frameworks use their own formulaic methodologies for 
computing the capital charges that will be applied to various asset allocation schemes.

Solvency II
For Solvency II we focus on the Market Risk component of the Solvency Capital Requirement (SCR) 
calculation as shown in Figure 11. This is comprised of six sub-components: Interest rate risk, 
spread risk, equity risk, property risk, concentration risk and currency risk:

Figure 11: Solvency II Solvency Capital Requirement (SCR) modules 

SCR

Market

Health

Default

Life

Non-life

Intangible

Source: Invesco, Solvency II Directive.

Interest rate risk:
All interest rate sensitive assets and liabilities are exposed to an upward and downward interest rate 
shock. The shocks are prescribed by the European Insurance and Occupational Pensions Authority 
(EIOPA) for various sovereign curves. Two examples are shown in Figure 12.

Figure 12: Sample EIOPA sovereign rate curves with curve shocks 
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Source: Invesco, EIOPA. Data as of Aug. 31, 2018.

1 This approach is used only to estimate the risks of the liabilities. The present value is always computed based on the exact 
discount curve.
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A pricing engine is used to compute the impact of both the upward and downward shock to the 
assets and the liabilities. This way, each asset and the liabilities have two possible interest rate 
charges – an upward shock charge and a downward shock charge. Figure 13 shows the resulting 
charges of various duration liabilities in different regions.

Figure 13: Example SCR charges for various duration liabilities (%)

USD EUR BRL

Duration SCRIRup SCRIRdown Duration SCRIRup SCRIRdown Duration SCRIRup SCRIRdown

SCG 4 4.67 6.06 5.44 5.03 4.83 0.96 3.27 16.84 18.93

SCG 10 12.67 12.62 11.87 13.34 12.21 5.28 7.64 27.79 37.72

SCG 16 20.67 18.77 18.44 20.85 18.43 10.83 12.93 35.30 58.25

Source: Invesco, EIOPA, BarraOne, Russell standard cash flow generator.

Spread risk:
Asset spread SCR charges are computed based on the issuer type, the asset rating, and the asset 
spread duration. There are three types of assets with spread risk charges: bonds and loans, 
securitized assets, and derivatives.
• Bonds and Loans 

Bonds and loans are further grouped into three categories each with its own treatment: 
Corporate bonds and loans, infrastructure bonds, and government bonds.
 – Corporate bonds and loan 
Corporate bonds and loans entail all bonds that do not fall in the other spread categories. SCR 
charges for these bonds depend on their rating and spread duration. Figure 14 provides sample 
SCR charges for specific rating/duration combinations.

Figure 14: Sample corporate bond and loan SCR charges (%)

Spread 
Duration AAA AA A BBB BB B or less NR
1-Year 0.9 1.1 1.4 2.5 4.5 7.5 3.0

5-Year 4.5 5.5 7.0 12.5 22.5 37.5 15.0

10-Year 7.0 8.5 10.5 20.0 35.0 58.5 23.5

20-Year 12.0 13.5 15.5 30.0 46.5 63.5 35.5

Source: Invesco, Solvency II Directive.

 – Infrastructure Bonds 
Infrastructure debt is treated more favorably than corporate debt. To qualify for this treatment, 
the infrastructure project must be located in the European Economic Area (EEA) or Organization 
for Economic Co-operation and Development (OECD) regions. In the case that the debt is not 
rated but is senior to all other claims, it will be treated as a BBB rated issue. Any infrastructure 
projects that are rated below BBB do not qualify. The SCR charge structure is like that of 
corporates as shown in Figure 15.

Figure 15: Sample infrastructure bond SCR charges (%)

Spread 
Duration AAA AA A BBB BB B or less NR
1-Year 0.64 0.78 1.00 1.67 – – –

5-Year 3.20 3.90 5.00 8.35 – – –

10-Year 5.00 6.05 7.50 13.35 – – –

20-Year 8.60 9.65 11.10 20.05 – – –

Source: Invesco, Solvency II Directive.

 – Government Bonds 
Bonds issued by the European Central Bank or central governments and banks of member 
states denominated in local currency are exempt from SCR charges. Bonds issued by other 
central banks or countries denominated in their local currency do receive SCR charges. Figure 
16 presents the SCR charge structure for government bonds.
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Figure 16: Sample government bond SCR charges (%)

European 
Sovereign 

Bonds Non-European Sovereign Bonds 
Spread 
Duration Any Rating AAA AA A BBB BB B or less NR
1-Year 0.0 0.0 0.0 1.1 1.4 2.5 4.5 –

5-Year 0.0 0.0 0.0 5.5 7.0 12.5 22.5 –

10-Year 0.0 0.0 0.0 8.5 10.5 20.0 35.0 –

20-Year 0.0 0.0 0.0 13.4 15.5 30.0 46.5 –

Source: Invesco, Solvency II Directive.

• Securitized assets 
Securitized assets are treated punitively in Solvency II. There are three types of securitized assets 
distinguished generally as Type I, Type II, or Re-securitizations. For an asset to qualify for Type 
I securitization it must be listed in an EEA or OECD country and needs to also be the most 
senior tranche. Furthermore, the underlying loans need to be homogeneous and not include 
re-securitization. Any securitized asset that is not Type I or re-securitized is considered Type II. 
The SCR charges are based on the type of securitization, the rating, and the spread duration 
of the underlying asset. Figure 17 presents SCR charges for hypothetical five-year duration 
securitized assets.

Figure 17: Sample SCR charges for securitized bonds with a five-year spread duration (%)

Spread 
Duration AAA AA A BBB BB B or less NR
Type I 10.5 15 15 15 – – –

Type II 62.5 67 83 98.5 100 100 100

Re-Sec 100 100 100 100 100 100 100

Source: Invesco, Solvency II Directive.

• Derivatives 
The treatment of credit derivatives depends on whether they are used for hedging or 
opportunistic bets. Asymmetric absolute and relative shocks should be applied to compute 
resulting charges.

The total SCR spread charges are computed as the sum of the underlying charges as below:

Equity risk2:
There are three types of equity charges as indicated in the following table:

Figure 18: Equity SCR charges (%)

Spread Duration Description Charge
Type I Listed equities in EEA and OECD countries 39

Type II Listed equities not in EEA or OECD countries and unlisted equities 49

Infrastructure Qualifying infrastructure equities 30

Source: Invesco, Solvency II Directive.

2 Assets not covered by other modules are also treated as equity Type 2 assets. This includes commodities, alternative 
investments, and any other assets for which look-through is not possible.
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The total equity SCR is then calculated as follows:

SCREQUITY = SCRE1
2 + SCRE2 + SCREinf

2+ 2 × 0.75 × SCRE1 × SCRE2 + SCREinf

1
2 

Property risk:
All direct real estate holdings are charged at a 25% rate. In the case that any leverage is employed 
it needs to be accounted for by accordingly adjusting the charge.

Concentration risk:
Concentration risk is related to having too much exposure in a single entity. This calculation is 
highly non-linear and must be calculated separately.

Currency risk:
All assets that are denominated in a currency that is different from the insurers base currency will 
be charged at a 25% rate.

Once all the subcomponents of the SCR charges are computed, the total market risk SCR charge 
can finally be computed as follows:

SCRMARKET = SCRMR
*
· ΣSCR · SCRMR

1
2
 

In the above formula, SCRMR refers to the vector of the six SCR charges outlined above and ∑±
SCR 

refers to the correlation matrix which can take on two possible values as shown in Figure 19.

Figure 19: SCR Upward and downward correlation matrices

Upward Shock Downward Shock

SCRIR SCRSP SCRCO SCRFX SCREQ SCRPR SCRIR SCRSP SCRCO SCRFX SCREQ SCRPR

SCRIR
1 0 0 0.25 0 0 1 0.5 0 0.25 0.5 0.5

SCRSP
0 1 0 0.25 0.75 0.5 0.5 1 0 0.25 0.75 0.5

SCRCO
0 0 1 0 0 0 0 0 1 0 0 0

SCRFX
0.25 0.25 0 1 0.25 0.25 0.25 0.25 0 1 0.25 0.25

SCREQ
0 0.75 0 0.25 1 0.75 0.5 0.75 0 0.25 1 0.75

SCRPR
0 0.5 0 0.25 0.75 1 0.5 0.5 0 0.25 0.75 1

Where: 
SCRIR = Interest rate risk charge
SCRSP = Spread risk charge
SCRCO = Concentration risk charge

SCRFX = Currency risk charge
SCREQ = Equity risk charge
SCRPR = Property risk charge

Source: Invesco, Solvency II Directive.

An SCRMarket value is computed based on each of the above correlation matrices using the 
corresponding SCRir_up and SCRir_down asset and liability charges. The final value of SCRMarket is the 
worst of the two values.
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National Association of Insurance Commissioners (NAIC) Risk-Based Capital (RBC)
Similar to the Solvency II framework, the RBC framework in the US is also comprised of multiple 
modules. In this case, the modules vary based on the insurance entity type as shown in Figure 20. 
Invesco Vision addresses only the asset risk modules that focus on investment risks associated with 
fixed income and equity. 

Figure 20: NAIC RBC insurance company modules 

RBC - Life RBC - Property RBC - Health

Co: Affiliate risk

C1cs: Asset risk Common stock

C10: Asset risk - All other

C2: Insurance risk

C3a: Interest rate risk

C3b: Health credit risk

C3c: Market risk

C4a: Business risk

C4b: Business Risk – Health

R0: Affiliate risk

R1: Asset risk - Fixed income

R2: Asset risk - Equity

R3: Credit risk

R4: Underwriting risk

R5: Underwriting risk

Rcat: Catastrophe risk

H0: Affiliate risk

H1: Asset risk

H2: Underwriting risk

H3: Credit risk

H4: Business risk

Source: Invesco, NAIC.

Fixed income credit risk
This module captures credit related charges. The key driver of the charges is the underlying NAIC 
designation of the fixed income assets. The charges also vary based on the type of insurance entity 
as shown in Figure 21.

Figure 21: Fixed income credit risk RBC charges (%)

NAIC 
Designation Life (pre-tax) Life (post-tax)

Property & 
Casualty Health

NAIC 1 0.40 0.30 0.30 0.30

NAIC 2 1.30 0.96 1.00 1.00

NAIC 3 4.60 3.39 2.00 2.00

NAIC 4 10.00 7.38 4.50 4.50

NAIC 5 23.00 16.96 10.00 10.00

NAIC 6 30.00 19.50 30.00 30.00

Source: Invesco, NAIC.

For most fixed income securities, NAIC designations follow a mapping of Nationally Recognized 
Statistical Ratings Organizations (NRSROs) ratings:

NAIC 1 = A-rated and above
NAIC 2 = BBB-rated
NAIC 3 = BB-rated
NAIC 4 = B-rated
NAIC 5 = CCC-rated
NAIC 6 = Below CCC

Non-fixed income asset risk
This module includes all non-fixed income assets, such as equity and real estate. Figure 22 outlines 
these charges for the four types of insurance entities.

Figure 22: Non-fixed income RBC charges (%)

NAIC 
Classification Life (pre-tax) Life (post-tax)

Property & 
Casualty Health

Equity 30 19.50 15 15

Real Estate 15 9.75 10 10

Source: Invesco, NAIC.
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Once all the RBC module charges are computed, the total RBC charge can be determined 
formulaically. Below we indicate the equations for various insurance entities where risks are indicated 
by the risk modules for each entity type:

Based on the above equations we introduce the correlation matrices for the two risk categories 
covered by Invesco Vision in Figure 23.

Figure 23: RBC correlation matrices for various insurance entities

Life Property & Casualty Health
Fixed 

income
Non fixed 

income
Fixed 

income
Non fixed 

income
Fixed 

income
Non fixed 

income

Fixed 
income 1 0 1 0 1 1

Non fixed 
income 0 1 0 1 1 1

Source: Invesco, NAIC.

It is worth noting here a key difference between Solvency II in Europe and RBC in the United States. 
Whereas Solvency II requires look-through to the underlying holdings of mutual funds, RBC does not. 
This means an insurer in Europe has the same effective capital charge whether they invest in bonds 
directly or via a mutual fund; but for US insurers, unrated bond funds will be treated as equity 
investments, resulting in a much higher capital charge compared to holding the bonds directly.

Asset level covariance matrix
Given either the economic, Solvency II, or NAIC risk factor exposures and their associated risk 
factor covariance or correlation matrices, we ultimately wish to construct an asset level covariance 
matrix. We wish to translate the potentially large number of risk factors or capital risk charges into 
estimates of asset level covariances. For N assets, this results in a compact N by N risk matrix that 
can be used for portfolio construction and risk estimation exercises. 

For the economic risk model, once we have the vector of factor exposures for each asset, we group 
these vectors into a matrix of factor exposures. We then multiply the factor exposures with the 
factor covariance matrix to produce the asset level covariance matrix. Namely, given the K by 1 
factor exposure vectors βj for j = 1, 2, …, N, and the K by K factor covariance matrix Σf, we compute 
the economic asset level covariance matrix ΣA as follows:

where Λ = diag σ1
2, σ2

2, , σN
2   is a diagonal matrix of idiosyncratic or specific risks. In Figure 24 we 

illustrate the dimension reduction of the nearly 4,000 by 4,000 factor covariance matrix to an asset 
covariance matrix.
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Figure 24: Converting factor covariances to asset covariances 

Factor covariance matrix
F1 F2 F3 F4 … FK-1 FK Asset covariance matrix

F1 A1 A2 … AN-1 AN

F2 A1

F3 A2

F4

…

…

AN-1

FK-1 AN  A ≈ 10 assets 
FK  K ≈ 4,000 factors 

Source: Invesco, BarraOne.

For the Solvency II risk model, we group the solvency risk factors in a similar fashion and compute 
the matrix product where we now use the 6 by 1 Solvency risk vectors βj for j =1, 2, …, N and the 6 
by 6 risk up/down correlation matrices  SCR  (corresponding to prescribed up and down interest rate 
shocks) and define the asset level covariance Solvency II risk covariance matrix as follows:

A= 1 2 N
T

SCR 1 2 N 

Finally, for the NAIC risk model we construct the asset level risk covariance matrix through a similar 
process to the one followed for Solvency II. However, for NAIC there are two risk categories and 
there is only one correlation matrix ΣNAIC, hence the asset level covariance is formed through the 
following matrix product:

A= 1 2
T

NAIC 1 2  

Estimating expected returns
Having established a process to estimate the risk of various assets, we also need to be able to 
estimate their returns. To do this we rely on Invesco’s capital market assumptions (CMAs) that cover 
a broad number of asset classes across multiple regions of the global economy. However, despite 
the extensive coverage, there will be cases where our asset blocks do not perfectly align with our 
CMA asset coverage. As a result, and in order for us to systematically assign returns to any asset 
block, we have developed a framework that leverages the underlying factor exposures of our CMA 
and non-CMA assets.

The algorithm aims to create a replicating (minimum tracking error) portfolio of CMA assets for any 
asset we want to further evaluate. This portfolio is created by leveraging the factor exposures and 
the relative optimization framework that will be discussed later. We then assume that the replicating 
portfolio, comprised entirely of CMA assets, should provide a reasonable estimate of the return of 
the asset in question. The return of the asset is estimated as follows:

where wj are the CMA asset weights that sum to 100%, RCMAj is the j’th forecasted CMA asset’s 
return, and e is the residual error.

In most cases, the algorithm is very effective in identifying a CMA asset portfolio that closely tracks 
the asset being evaluated. However, in some situations, where the asset lies in a space that is not 
covered by our CMAs, replication can be more difficult. Invesco Vision will alert the user to instances 
when assets can not be tracked well. In such cases, a thorough, manual review of the estimate is 
recommended where a return override can be input into the system.

Depending on the specific problem, a user can choose to employ 10-year horizon CMAs or five-year 
horizon CMAs. Also, for fixed income, it is possible to use the yield as an estimate of return, entirely 
ignoring the CMAs. Finally, a user may wish to utilize their own CMAs, in which case they would 
need to input them directly into the system. Figure 25 provides an example of various expected 
return possibilities.
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Figure 25: Example of expected return selection

Asset
Invesco CMA 
10-year (%)

Invesco CMA 
5-year (%)

Yield / CMA 
10-year (%)

Yield / CMA 
5-year (%) User (%)

US large cap equity 6.5 5.7 6.5 5.7

US small cap equity 7.9 7.9 7.9 7.9

Europe ex UK equity 7.3 7.4 7.3 7.4

UK equity 8.4 8.2 8.4 8.2

APAC ex Japan equity 9.5 10.9 9.5 10.9

Japan equity 5.6 5.6 5.6 5.6

Emerging market equity 9.5 10.4 9.5 10.4

Source: Invesco.

Arithmetic versus geometric returns
In practice, asset returns are most commonly expressed in geometric terms. This is because the 
investors are most often concerned with either the rate at which an investment grew in the past 
or the rate it might be expected to grow in the future (or over the long term). The geometric mean 
return is the average rate of return per period when returns are compounded over multiple periods. 
Consider a time series of returns  periods, and some initial investment amount 
W0. The value of the investment at time . The geometric 
return  or geometric mean, of such a time series is then:

The geometric mean return is of interest to investors because it neatly expresses the periodic growth 
rate of a time series, i.e., WT = Wo(1+µg)

T. This is of practical importance in terms of understanding 
the desirability of one investment over another. However, the geometric mean says nothing about 
risk, or rather, the variability of the returns an investor might actually receive from one period to 
the next. In fact, two assets can have the same geometric mean but exhibit substantially different 
variability of returns. To consider risk we must understand the expected value of the return we might 
receive in any period along with the variability around that expected value. This is where expressing 
returns in arithmetic terms is useful for investors. 

The arithmetic mean μa is just the simple average of the periodic returns produced by an asset over 
a specified investment horizon and is calculated as:

This is particularly important for portfolio construction as it describes the probability-weighted 
return outcome (central tendency) of a return distribution, or rather, its expected return. If the 
returns provided by a particular return distribution were all equally likely, then the geometric mean 
could serve as our expectation. However, returns for most risky financial assets are not equally 
likely as they exhibit some degree of variability. This variability is most commonly expressed as 
a function of standard deviation. It can be shown that  when the standard deviation of 
a return series is greater than zero. This highlights the fact that the volatility of a return series 
provides a link between the arithmetic return and the geometric return. Markowitz and Blay (2013) 
explore various mean-variance approximations to the geometric mean and find that the following 
approximation provides a reasonable generalization of this relationship:
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This approximation allows investors to go back and forth between arithmetic and geometric returns 
as long as they know an asset’s or portfolio’s arithmetic mean μa and volatility σ. It should be noted 
that using the historical information (e.g., arithmetic means, standard deviations, and correlations) 
in a portfolio analysis will produce portfolios that will have likely performed well in the past. 
Expected returns should represent expectations for returns that are likely to be achieved in the 
future expressed in arithmetic terms. The approximation above can also be helpful in producing 
expected return estimates that are appropriate for use in a portfolio analysis as well as being 
aligned with intuition in geometric terms.

As an example of how well such a simple approximation can work, in Figure 26 we consider the 
historical arithmetic and geometric returns for three standard asset classes: 1) US Large Cap 
Equity, 2) US Investment Grade Bonds, and 3) Commodities and compare the historical geometric 
return with one derived from the approximation above. The two geometric returns are very close 
and differ by no more than 10.5 basis points in this example.

Figure 26: Historical arithmetic, geometric and derived geometric returns for select asset classes

• Historical arithmetic return  • Historical geometric return  • Derived geometric return
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Monthly return data period from Sept. 1, 1998 to Aug. 31, 2018.  
Note: The historical volatilities of the asset classes over the period are as follows: US Large Cap Equity 14.5%, US 
Investment Grade Bonds 3.5% and Commodities 22.5%. Past performance cannot guarantee comparable future results.
Source: Invesco, Bloomberg.

The ability to effectively translate arithmetic returns to geometric returns (and vice versa) is 
of consequence to investors as the return inputs, or expected returns, used in a mean-variance 
portfolio optimization must necessarily be expressed in arithmetic terms. The reason for this is 
that the arithmetic mean of a weighted sum (e.g., a portfolio) is the weighted sum of the arithmetic 
means (of the portfolio constituents). This does not hold for geometric returns. In other words, 
the weighted average of the arithmetic means of the assets included in a portfolio is equal to the 
arithmetic mean of the portfolio as a whole. This is not the case when geometric means are used. 
Since the expected return inputs of a portfolio analysis are required to be in arithmetic terms, the 
outputs of such an analysis are also in arithmetic terms and must be translated, through the use 
of the portfolio mean and standard deviation, into the more intuitive geometric terms that describe 
the expected growth rates provided by the efficient set of portfolios for portfolio selection. Invesco 
Vision allows for more intuitive portfolio selection by presenting efficient frontiers in geometric 
terms. Figure 27 presents an example of an efficient frontier presented in both arithmetic and 
geometric terms.
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Figure 27: Efficient frontier presented in arithmetic and geometric terms 

• Efficient frontier - arithmetic return  • Efficient frontier - geometric return
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Source: Invesco.

Note that the efficient frontier expressed in terms of arithmetic returns sits well above the efficient 
frontier expressed in terms of geometric returns. This is so because the geometric returns are 
downward adjustments of the arithmetic returns. It is only when we view the efficient frontier 
expressed in this fashion that we can see how, at segments of the frontier where portfolio volatility 
is sufficiently large, pursuing portfolios with higher arithmetic returns can result in the likelihood of 
achieving lower long-term (geometric) returns than portfolios with lower risk. Investors should avoid 
these segments of the frontier. 

Currency adjusted expected returns
Portfolios of an international or global nature will likely invest in financial instruments that are based 
in foreign currencies. For instance, a UK-based multi-asset portfolio manager will likely have an 
appreciable allocation to US large-cap equities based in USD. Since the UK-based manager wishes 
to consider their portfolio returns in terms of the local GBP currency there is need to convert the 
forecasted returns for the US large-cap equity asset class from a USD-based perspective to a 
GBP-based perspective, especially for the purposes of optimal portfolio construction via mean-
variance optimization or its robust counterpart.

For the example UK-based portfolio manager, given an annualized expected return of  for the 
USD-based large cap equities, and an annualized US government bond yield of iUSD and a similar 
annualized UK government bond yield of  our formulation for the annualized expected return 
in GBP is: 

In what follows below, we provide the rationale for this return conversion. 

At the core of our currency-based expected return conversion process is the concept of Interest 
Rate Parity. We utilize the basic concept that the future value of an asset denominated in currency 
X is equivalent to the foreign exchange rate-converted future value of the asset denominated in 
currency Y. Figure 28 below graphically depicts such an equivalence.
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Specifically, let X0 denote the current value of an asset denominated in currency X and let XT denote 
its future value. Then, assuming a single period return of  the future value is simply . 
(This is the top dark blue segment in Figure 28.)

Figure 28: Interest rate parity commutation diagram

Current asset value
(Currency X)

Future asset value
(Currency X)

Current asset value
(Currency Y)

Future asset value
(Currency Y)

X0

Y0

XT

1/STS0

YT

1+µx 

1+µy 

Source: Invesco, BarraOne.

An alternative to going directly from the current value X0 to the future value XT (in terms its return 
 in currency X) is to first convert the value of X0 in currency X to the value Y0 in currency Y. Such 

a conversion may be simply expressed as Y0 = S0X0, where S0 is the current foreign exchange rate in 
going from currency X to currency Y. (This is the left-most segment of Figure 28.) Next, assuming a 
single period return of , the future value in currency Y is simply  . (This is the bottom 
segment of Figure 28.) Finally, the future value YT may be converted to the future value XT through 
a similar foreign exchange rate conversion. Namely,  where  is the future foreign 
exchange rate going from currency Y to currency X. (This is the right-most segment of Figure 28.)

Since the future value of the asset denominated in currency X should be the same as the foreign 
exchange rate-converted future value of the asset denominated in currency Y, so as to not violate 
arbitrage conditions, this means:

If we perform the same analysis along the same paths, now in terms of two government bonds 
(whose returns we treat as certain), one denominated in currency X with yield ix and the other 
in currency Y with yield iy, then we will have:

Noting that  and similarly that  means 

Since our portfolio construction perspective is a strategic, long-horizon one, we use the annualized 
yields of the 10-year government bonds in currencies X and Y in the above return conversion 
formula and combine them with the annualized forecasted return in currency X. This is our estimate 
of the forecasted annualized return in currency Y. This modeling assumption leads to similar return 
estimates whether we choose to hedge or not. Of course, from a risk perspective currency hedging 
will have a meaningful impact.
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Cash flow currency translation
International, or global portfolios, will likely hold investment positions in assets that are denominated 
in various foreign currencies. For the case of fixed income assets, whose role may be to provide 
predictable cash flows, this may introduce unwanted risks due to currency and relative interest rate 
volatility. To address these risks, investors may choose to hedge out the currency exposure using 
derivatives.

While there are many ways this hedging exercise can be pursued, we assume that it is done using 
cross currency swaps. Figure 29 provides an example of the result of converting the cash flows 
provided by the Bloomberg Barclays Global Corporate Index into EUR hedged cash flows.

Figure 29: EUR-hedged equivalent cash flows 

Market value normalized Currency-based cash flows Market value normalized EUR-hedged cash flows

• USD  • EUR  • GBP  • Other • Unhedged  • EUR hedged
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Source: Invesco, Bloomberg.

Conversion between any two currencies requires the use of three distinct curves. Figure 30 shows 
the three rate curves used for the case of converting a USD-based cash flow into EUR-based cash 
flows. As a first step we use the USD Zero rate curve to convert fixed USD into floating USD cash 
flows. We then convert those floating cash flows to fixed EUR cash flows employing the EUR Zero 
rate curve combined with the basis curve.

Figure 30: Discount curves used for cash flow conversion between USD and EUR 
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Portfolio construction
Absolute risk optimization
Given a vector of expected annualized arithmetic returns μ that are determined through our capital 
market assumption process, and an annualized asset level covariance matrix ΣA that is derived from 
either our economic, Solvency II, or NAIC risk model, our basic goal in absolute risk optimization is 
to minimize the absolute portfolio risk for any given portfolio return.  

Mathematically, the problem is to find the best collection of investment (or portfolio) weights W* 
that satisfies:

for a collection of values  . Additionally, we may simultaneously require that each 
portfolio weight fall within a range of acceptable values, i.e.,  N and also require 
that sum of the portfolio weights meet a required budget, i.e.,  Typically, we take the 
value of the budget to be 1 meaning that the portfolio weights add to 100%.

Relative risk optimization
Relative risk optimization is a very similar problem to absolute risk optimization, only that in the 
relative risk case we seek to minimize risk relative to a benchmark or reference asset for any given 
portfolio return. We treat this problem as being long the portfolio and short the benchmark. 
Mathematically, the problem may be written as: 

where the optimal weight vector is now of the form:

and the return vector is express as being relative to the benchmark:

As in the absolute risk optimization problem, the "μ" is the absolute return for the portfolio and μb 
is the return of the benchmark of interest. Similar to how we converted the factor covariance matrix 
into an asset level covariance matrix (see page 17) we create the relative covariance matrix as 
shown below: 

where Σf is the factor covariance matrix, i.e., the matrix of covariances between the risk model’s 
factors and Λrel is the relative specific risk matrix. In Figure 31 we illustrate the translation of the 
nearly 4,000 by 4,000 factor covariance matrix to the benchmark relative asset covariance matrix.

Figure 31: Reducing the large factor covariance matrix to the smaller asset level covariance matrix

Factor covariance matrix

F1 F2 F3 F4 … FK-1 FK Asset covariance matrix
F1 B A1 A2 … AN-1 AN

F2 B

F3 A1

F4 A2… …

FK-1 AN-1

FK  K ≈ 4,000 factors AN  A ≈ 10 assets + benchmark 

Source: Invesco, BarraOne.
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Robust mean-variance portfolio optimization
A mean-variance optimal portfolio is one that minimizes risk for any given portfolio return. 
However, unconstrained mean-variance optimization (MVO) can exhibit characteristics that are 
undesirable for some investors. For example, if some of the assets are close substitutes, asset 
weights can be unstable, i.e., a small change to the expected returns yields substantially different 
asset weights even though the distribution of returns provided by the portfolio is likely to be only 
marginally affected. 

Additionally, unconstrained MVO can result in portfolio allocations that are highly concentrated in 
a single asset or across a small number of assets. In this sense, the basic implementation of MVO 
is not robust to the likelihood of errors in the estimation of expected returns and exposes investors 
to the possibility of overweighting underperforming assets. For at least these reasons it may be 
desirable, if not necessary, to modify the basic MVO framework.

Ceria and Stubbs (2006) have carefully considered the fundamental issues addressed above and 
have reformulated the MVO problem. At the heart of their modified portfolio optimization process, 
which they call Robust Mean-Variance Optimization, is the further incorporation of the uncertainty 
of the expected, or forecasted, returns. They start by assuming that the actual returns the portfolio 
will realize reside within an uncertainty ellipsoid of known size surrounding the expected returns. 
This is formulated as follows and is also visually depicted in Figure 32.

Where  and  is the inverse cumulative distribution function of the Chi-squared 
distribution with n degrees of freedom. Finally,  is the uncertainty covariance matrix, not to be 
confused with the asset return covariance matrix, .

Using the above, the Robust MVO problem can be formulated as follows:

A

for a range of candidate values  and require that the asset weights satisfy lower and 
upper bounds and add to a portfolio weight budget of 100%. In this setting, a penalization term 
(the second term in the above return constraint involving the square root) has been added to the 
return target constraint. By incorporating a relatively simple penalty term, the portfolio optimization 
process can account for expected return uncertainties, becoming less sensitive to small changes in 
forecasts, and providing optimal asset allocations that are more diversified than those provided by 
unconstrained MVO.

Figure 32: Uncertainty ellipsoid showing the distance between the actual and forecasted returns

Forecasted return vector

Return difference vector

Uncertainty ellipsoid

Actual return vector

Asset 2 return

Asset 1 return

Asset 3 return

Source: Invesco.
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Return agnostic solutions
Given a set of assets, an investor may be interested in identifying possible allocations that are not 
reliant on return forecasts such as an equal weighted portfolio, an equal volatility portfolio, an equal 
risk contribution portfolio, a maximum diversification portfolio, or a global minimum variance portfolio.

Each of the above solutions require varying amounts of forecasted information ranging from 
no information (equal weight), to asset risk estimates (equal volatility), and finally, covariance 
estimates (equal risk contribution, maximum diversification, and global minimum variance). Figure 
33 summarizes the data requirements and the corresponding mathematical formulations for each 
of the return agnostic solutions.

Figure 33: Inputs required for various portfolio construction methods

Construction 
method

Volatility 
forecast

Correlation 
forecast

Return 
forecast Mathematical formula

Equal weight – – –

Equal risk √ – –

Equal risk 
contribution √ √ –

Maximum 
diversification √ √ –

Global minimum 
variance √ √ –

Mean-variance √ √ √

Source: Invesco, BarraOne.

Cash flow (liability) matching
An institution or portfolio manager that is expected to make a sequence of future cash payments is 
faced with a standard liability matching problem. In such a problem there is a well-defined schedule 
of future cash payments that must be made using the principle and coupon payments from a 
collection of fixed income investments. For this type of a problem, we seek to create a portfolio, 
subject to various constraints, that defeases the liabilities at the lowest cost possible. 

Cash flow matching problems are rather straightforward in that they rely on linear optimization 
techniques. Given the universe of available fixed income securities, there is considerable latitude 
in choosing the subset of the available fixed income securities needed to meet the investment goal. 
Higher returns are often associated with lower credit ratings, and so a credit rating representing the 
average (or collective rating) of all of the fixed income securities held in the investment portfolio 
may be part of the optimization (i.e., minimize cost subject to some desired level of credit quality). 
Mathematically, we seek to minimize the following objective function:

where x represents the vector of amounts of each of the possible fixed income securities 
to purchase, and p denotes their respective prices. The rest of the problem concerns the 
formulation of constraints. 
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Foremost, we must be able to make each anticipated liability payment at the scheduled times 
. Additionally, we may be required to hold a minimum amount of certain fixed income 

securities such as government bonds and may similarly be required to hold no more than 
a prescribed amount of higher risk investments such as BBB-rated bonds. This means each 
investment must be constrained by lower and upper bounds. We also wish to maintain a positive 
investment balance at each point in time. This means that cash inflows from coupons, repayments, 
and previous reinvestments should be sufficient to meet cash outflows (liability payments) at any 
point in time. Lastly, the average or collective credit rating of the portfolio may be required to meet 
or exceed some pre-specified minimum rating. All of these portfolio attributes can be defined as 
linear equality or inequality constraints.

First, to meet the liability payments at each time period , we impose the following equality 
constraint

where C is a matrix that represents the cash repayments at each point in time for each security. 
R is a matrix whose entries represent the reinvestment opportunities for positive investment 
balances through time which takes on the form shown below, b represents the balance of the 
investment portfolio at each point in time, and L represents the stream of liability payments.

Second, we require the investment balances all be positive so that b  0 for each time period. 
Third, to meet the requirements of minimum allocations and/or maximum limits to specific 
instruments, we generically require each asset to satisfy explicit lower and upper bounds. 
Finally, we impose a minimum portfolio-level credit rating constraint by converting the 
standard alpha-numeric credit ratings into numeric values. 

Multi-period portfolio construction
Investors with a long-term investment horizon, during which there may be numerous cash inflows 
and outflows, face a multi-period portfolio construction problem. In particular, they must consider 
the totality of the cash flows and their ultimate financial goal in order to determine the best 
investment strategy through time. Such an optimal investment strategy results in a glidepath or 
a sequence of time dependent optimal portfolios in which to invest. The strategy can be used to 
address multiple objectives such as maximizing expected wealth at the end of a 30-year investment 
horizon subject to various inflows and outflows while not exceeding a specific level of uncertainty. 

Modeling such a complex process goes beyond single-period mean-variance optimization and 
requires one to revisit the foundations of investing in uncertain markets. At its core, the modeling 
of portfolios in dynamic markets is an exercise in stochastic analysis. For , and cash 
flows , the portfolio’s wealth evolves from period t to t+1 as a function of the current 
portfolio’s return  and next period’s cash flow through:

Multi-period portfolio construction seeks to maximize the expected terminal wealth  
subject to pre-specified cash flows while penalizing for the variance of terminal wealth . 
Mathematically, we solve the following optimization problem:
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where  are the portfolios over time. In the equation above, the variance multiplied 
by a risk aversion parameter λ. As an example, an investor who is not sensitive to risk will choose 
λ = 0 and will effectively maximize expected wealth. On the opposite end of the spectrum, an 
investor who only cares about risk will choose a very high value of λ and will effectively minimize 
the variance of the terminal wealth. By varying λ in the above formulation we are able to create 
a full efficient frontier.

We conduct the multi-period optimal portfolio construction exercise in the presence of cash flows 
by following the stochastic dynamic programming (SDP) principle. This means, given a financial goal 
of interest such as maximizing the probability distribution’s mean value and minimizing its variance, 
we start the optimization process at the end of the investment horizon at time t = T-1 and work 
backward in time to t = 0. Along the way we solve a series of portfolio optimization problems that 
produce the optimal weights needed to a) achieve the optimal future outcome and b) use these 
optimal weights to solve the problem in the previous time period.

More specifically, starting at time t = T-1 , we create a grid of N points of future wealth  WT
1,… ,W T

N  
as well as a grid of N points of current wealth WT-1

1 ,… ,W T-1
N . We perform a portfolio optimization 

process for each of the current nodes in  WT-1
1 ,… ,W T-1

N   and collect the optimal portfolio weights in 
the corresponding nodes. Once we have solved the problem at all nodes at time t = T-1, we lock 
down the optimal weights at the t = T-1 wealth nodes, namely, any portfolio strategy at t = T-2 will 
use the t = T-1 portfolio weights to reach at t = T portfolio wealth. Once this is determined, we solve 
the same optimization problem for all the nodes at t = T-2 and continue working backwards until 
we reach t = 0 where we are just solving the optimization problem at only one node, i.e., the 
starting portfolio wealth W0. Graphically, we represent the SDP strategy by the tree in Figure 34. 
We note that at each future point in time we can obtain the average of the optimal weights across 
the nodes to give us the average glidepath.

Figure 34: The dynamic programming optimization tree

W1
1 WT−1

1 WT
1

W1
2 WT−1

2 WT
2

W1
N WT−1

N WT
N

W0

Source: Invesco.
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Portfolio analytics
Evaluating factor exposures
We can decompose the risks within a selected portfolio into various underlying factors. Invesco 
Vision includes multiple factor groups that allow investors to identify and evaluate the various risks 
with which they are faced. Figure 36 presents the economic factor groups considered and Figures 
37 and 38 present the Solvency II and NAIC factor groups. The following sections provide detail on 
how to aggregate or decompose factor risks to various levels of granularity or relevant groupings.

Isolated risk and contribution to risk
Risk can be decomposed and viewed either in isolation or in terms of contribution to total risk. 
In both cases, we need to first define the binary group inclusion matrix MG. It is a bit-mask-like 
diagonal matrix whose entries are either a 1 (meaning inclusion in the group of interest) or 0 
(meaning the factor is not included in the group of interest). As an example, consider the “Rates” 
risk factor group matrix MG as detailed in the group factor map shown in Figure 35.

Figure 35: The “Rates” group matrix MG

Factor covariance matrix

Factor1 Factor2 … Shift Twist Butterfly … Factork-1 Factork

Factor1 0

Factor2 0

… …

Shift 1

Twist 1

Butterfly 1

… …

Factork-1 0

Factork 0

Source: Invesco, BarraOne.

With MG defined and Σf, the factor covariance matrix, we can compute the isolated risk for a 
portfolio with B factor exposures and w weights as follows: 

Similarly, we can calculate the contribution to risk as follows: 

Here, the group contribution to risk is a percentage of the normalized total portfolio risk, so that all 
of the group contributions to risk along with the specific risk add up to 100 percent.

27 Evaluating factor 
exposures

27 Isolated risk and 
contribution to risk

30 Historical & 
hypothetical scenario 
analysis
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Figure 37: Solvency II factor group

Total

Rates Spread Equity Property Currency

Source: Invesco, Solvency II directive.

Figure 38: RBC factor groups

Total

Fixed Income Credit Non-Fixed Income

Source: Invesco, NAIC.

Example: Group factor analysis
We consider a simple example of our factor exposure analysis for a single fixed income instrument, 
namely an investment grade bond issued by a telecommunications firm. In this case, there are only 
eight factor exposures as shown below, and the specific risk of the bond is 7.97%.

Assuming that we wish to focus on the interest rate risks (indicated as GOV above), we first proceed 
to create the bit mask as shown below. Factor entries corresponding to interest rate exposures are 
indicated with a 1 while the corresponding group factor covariance matrix is shown in Figure 39.

Figure 39: Factor covariance matrix Σf (values X 10-6)

GOVSH GOVTW GOVBU SWPSH SWPTW SWPBU TELBBB CURUSD

GOVSH 50.63 6.82 -6.61 -2.00 1.45 0.06 -24.18 0.00

GOVTW 6.82 9.22 1.67 -1.16 -1.65 -0.75 1.27 0.00

GOVBU -6.61 1.67 3.35 -0.27 -0.56 -0.76 3.82 0.00

SWPSH -2.00 -1.16 -0.27 5.57 0.79 0.23 -2.55 0.00

SWPTW 1.45 -1.65 -0.56 0.79 2.91 0.42 -7.78 0.00

SWPBU 0.06 -0.75 -0.76 0.23 0.42 1.25 -1.66 0.00

TELBBB -24.18 1.27 3.82 -2.55 -7.78 -1.66 122.94 0.00

CURUSD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Source: Invesco.
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Putting the basic ingredients together, we calculate both isolated interest rate risk and interest rate 
contribution to risk as follows:

Historical and hypothetical scenario analysis 
An understanding of how a portfolio might have performed historically during various geopolitical 
and economic environments, as well as how it might perform in certain hypothetical scenarios that 
could occur in the future, can be used to inform decisions regarding the navigation of potential 
future market dynamics. Invesco Vision allows for these types of analyses providing detailed 
decompositions that help to identify key drivers of risk within a portfolio.

• Historical scenario analysis 
Modeling a portfolio’s performance during a historical period of interest is a straightforward 
exercise. In general, if one considers a historical period of interest, during which the model risk 
factors have returns of say rf1, rf2, through rfk, then using the known current exposures each asset 
has to each of the factors βj,k, and the weights of each of the assets within the portfolio Wj, the 
portfolio’s return for the period can be computed as follows:

It is important to note that this calculation relies on current factor exposures and that these values 
could have been different during any actual historical period. Historical scenario analysis provides 
valuable insight and yields the magnitude and direction of the portfolio’s return during periods of 
interest. Invesco Vision covers various pre-determined historical scenarios of interest during which 
a user can analyze their portfolio and observe its performance, including the 1970s oil crisis, the 
1987 market crash, the Global Financial Crisis, and more recently Brexit.

Example: historical scenario
We consider a simple historical example for a portfolio holding a single fixed income instrument as 
we did in the previous section. Here, we examine the 2010 European Bond Crisis spanning March 
14 - May 26. During this time, we record the relevant factor returns as well as the corresponding 
telecommunications firm bond factor exposures as shown in Figure 40.

Figure 40: The factor exposures, factor shocks and factor returns
2010 European Bond Crisis using telecommunications firm bond 4.682 ’46

Factors Exposures Shocks Returns 
(exposure x shock)

GOVSH 15.09 0.35% 5.27%

GOVTW 13.49 0.19% 2.62%

GOVBU 8.53 -0.02% -0.20%

SWPSH 15.09 0.03% 0.51%

SWPTW 11.87 0.00% 0.00%

SWPBU 8.80 0.00% 0.00%

TELBBB 15.10 -0.23% -3.42%

CURUSD 1.00 0.00% 0.00%

Total – – 4.79%

Source: Invesco, Barra One.
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Based on the equations shown previously, the portfolio return can be computed as the sum-product 
of the factor exposures and the factor shocks, which is 4.79%. It is important to note that this 
calculation is linear in nature and does not include any second order pricing effects such as 
convexity. When we account for such effects, the return is estimated to be 4.48%.

• Hypothetical scenario analysis 
Hypothetical portfolio analysis models various market movements that potentially could happen in 
the future. There are two types of scenarios: uncorrelated, where changes are isolated to a some 
specific factor, and correlated, where changes in factors are propagated across all other factors.
 – Uncorrelated scenario analysis 
In an uncorrelated scenario analysis with β factor exposures, w weights, and where we assume 
M factors are shocked by v, the portfolio return can be computed as follows:

 – Correlated scenario analysis 
At the heart of correlated scenario analysis is the concept of conditional expectation. We assume 
that our risk factor returns are distributed as a multivariate normal distribution and that the 
factor returns are correlated as indicated by the factor covariance matrix. In this case the basic 
recipe is to 1) prescribe a list of factor shocks, 2) propagate the factor shocks across the 
remaining factors, and 3) compute the portfolio returns as the sum-product of the factor 
exposures and the factor shocks.

To propagate the shock, we employ the following calculation:

where rfs are the originating factor shocks that are propagated to all factors rf. Σ2,1 is the covariance 
between the shocked factors and all other factors and Σ1,1 is the covariance of the shocked factors 
as shown in Figure 41. 

Figure 41: The factor covariance matrix block form

Factor covariance matrix blocks
F1 F2 F3 F4 … FK-1 FK

F1 Σ1,1 Σ1,2F2

F3

Σ2,1 Σ2,2

F4…

FK-1

FK

Shocked factors  All other factors 

Source: Invesco, BarraOne.

With all factor shocks having been propagated we can proceed to compute the portfolio returns just 
as we did in the historical case.

Invesco Vision allows users to consider a collection of hypothetical shocks. The shocks include 
movements to global equities, US equities, and EAFE equities, US Treasuries, currency exchange 
rates, oil, and gold. These can be viewed in correlated and uncorrelated terms.
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Example: Hypothetical scenario (uncorrelated and correlated)
Using the same single asset portfolio in the above examples, we consider the hypothetical scenario 
in which we shock the US Treasury curve by a parallel 100-basis-point upward movement. As before, 
there are eight non-zero factor exposures in this example.

In the uncorrelated case, the only factor exposure movements are the ones we have shocked, 
GOVSH, GOVTW, and GOVBU, and all of the remaining factor shocks are identically zero. In the 
correlated case, the three explicit interest rate shocks propagate and give rise to non-zero factor 
shocks across the remaining five risk factors. All of these shocks, along with the factor exposures, 
are summarized in Figure 42.

Figure 42: The factor exposures and the uncorrelated and correlated (propagated) factor shocks

Uncorrelated Correlated

Factors Exposures Shocks Returns Shocks Returns

GOVSH 15.09 -1.00% -15.09% -1.00% -15.09%

GOVTW 13.49 0.00% 0.00% 0.00% 0.00%

GOVBU 8.53 0.00% 0.00% 0.00% 0.00%

SWPSH 15.09 – – 0.05% 0.77%

SWPTW 11.87 – – -0.08% -0.93%

SWPBU 8.80 – – 0.04% 0.34%

TELBBB 15.1 – – 0.63% 9.44%

CURUSD 1.00 – – 0.00% 0.00%

Total – – -15.09% – -5.46%

Source: Invesco, BarraOne.

Similar to the previous result, the portfolio level return is just the sum-product of the factor 
exposures and factor shocks. The portfolio return for the uncorrelated and correlated shocks 
are -15.09% and -5.46%, respectively. When we include full re-pricing that includes the impact 
of convexity, the returns are -13.58% and -5.26%, respectively.
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Practical application: Case studies
Up to this point we have focused on providing a concise overview of the methods and techniques 
behind Invesco Vision’s capabilities in asset and liability modeling, portfolio construction, and portfolio 
analytics. We now shift our focus to the practical application of those capabilities. In this section, we 
present 15 case studies that provide examples of how Invesco Vision can be used to provide insights 
for better informed investment decision making. 

Each of these cases represents a translation of financial theory and quantitative techniques into 
real-world solutions for real-world investors. We have intentionally provided simple examples that 
present a particular concept or approach to highlight how Invesco Vision facilitates the application 
of judgment to identify practical solutions. A key principle used in the development of the system 
was that relevant information about the risk and trade-offs should be readily available to the user 
regardless of where they are in the portfolio analysis process. For example, a user can conduct 
various factor analyses or conduct historical or hypothetical scenario analyses on individual assets, 
current portfolios, or any point on an efficient frontier while engaged in a portfolio construction 
exercise…all without being disruptive to the process. 

To provide a sense of how the system has been designed we have attempted to reproduce the 
output from the Invesco Vision interface as closely as possible in all of these cases. You will be 
presented with information about the cases just as it would be presented in the system. This should 
provide insight regarding the ease with which various types of information about portfolios can be 
collected to inform judgment. It should be noted that while these cases focus on presenting the 
outputs provided by the system, they all rely on inputs that have been shaped by Invesco Vision’s 
asset and liability modeling capabilities. Invesco focuses significant resources toward the continued 
development and maintenance of these capabilities as they are at the center of portfolio and risk 
management exercises. Something that may be easily overlooked in reviewing these cases is the 
extent to which Invesco Vision facilitates the process of turning raw data into useful information that 
can be used to inform investing decisions.
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Case 1: Absolute risk optimization
Creating an efficient frontier

Mean-variance optimization is one of the most common approaches used for portfolio construction. 
The objective of a mean-variance analysis is to produce a frontier of portfolios that are efficient in 
terms of portfolio mean and variance (or standard deviation). This is an absolute risk optimization 
exercise where the risk being optimized, is the total risk of the portfolio. Invesco Vision provides this 
functionality along with capabilities that allow investors to better understand the risk characteristics 
of each of the portfolio assets, as well as for any portfolio that might be part of the analysis, efficient 
or otherwise. In this example, we consider an efficient frontier comprised of a small number of fixed 
income and equity indices. A hypothetical existing portfolio is also included for comparison. 

Figure C1a presents the output of an unconstrained mean-variance analysis and is divided into four 
quadrants. The upper left quadrant presents the efficient frontier, individual portfolio assets, as well 
as any pre-specified portfolio (commonly an investor’s current portfolio) charted along some measure 
of return and risk. Detailed factor analyses are easily accessible for any point included on this chart. 
Furthermore, horizontal and vertical projection lines for both the portfolio and benchmark onto the 
mean-variance efficient frontier provide an easy assessment of possible improvements that could be 
made in terms of portfolio return and risk. 

The upper right part of Figure C1a presents a factor analysis section that provides a deep dive into 
factor risks associated with a selected investment. If a portfolio or benchmark has been included in 
the analysis, they are always shown for reference purposes and indicated by the pink (portfolio) and 
gray (benchmark) dots. The factor analysis section allows users to drill deeper and understand factor 
exposures and risks in more detail. For example, a user can quantify the isolated risk associated with 
the equity technology sector or the risk associated with corporate bonds. In addition, users can 
toggle between three different views: isolated risk, contribution to risk and exposures. Figure C1b 
provides examples of the latter two views. 

The bottom two quadrants of Figure C1a are also dynamic and allow for an array of possible 
analytics. In this specific example, we have chosen to show portfolio weights that are presented 
as a frontier composition in the bottom left quadrant. You will notice that the composition chart 
is aligned with the efficient frontier above. This allows for a quick assessment of how the asset 
allocation evolves from the lowest risk allocation on the left to the highest risk allocation on the 
right. Next, the chart in the bottom right quadrant presents the exact asset-weights associated with 
any point selected on the frontier. In this case, the user’s current portfolio is selected. Just like the 
factor analysis section we again can see the portfolio and benchmark for reference purposes. Users 
can also conduct historical and hypothetical scenario analyses, review asset correlations, as well as 
assess cash flows provided by selected portfolios. 

While we have presented a simple mean-variance analysis, it serves to highlight the capabilities 
provided by Invesco Vision that provide support for making better informed investment decisions. 
Users can evaluate asset and portfolio risks, compare detailed risk and return characteristics of 
candidate portfolios with current or benchmark portfolios, and run various analyses that provide 
for a much deeper understanding of the trade-offs presented by investments under consideration. 
These capabilities facilitate both the portfolio construction exercise as well the ultimate task of 
selecting a portfolio that is closely aligned with a user’s preferences.
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Figure C1a: Absolute risk optimization
Unconstrained mean-variance efficient frontier

Figure C1b: Absolute risk optimization
Portfolio factor analytics
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Case 2: Relative risk optimization
Creating a style-premia portfolio

While analyzing and understanding portfolios in an absolute risk context is a common starting point 
for any portfolio construction exercise, it is often the case that portfolios are evaluated relative to 
some predetermined benchmark. In these cases, we may be interested in creating portfolios where 
return and risk are considered relative to a reference investment. In this example, we assume we are 
trying to construct a portfolio with style equity ETFs that will closely track the S&P 500. The rationale 
for such a portfolio would be to outperform the S&P 500 by efficiently tilting toward various style 
premia while still tracking the index within acceptable tolerances. In this example, we consider the 
following equity style ETFs: quality, momentum, high dividend, low volatility, value and size.

In Figure C2b, we provide a first pass at this portfolio construction exercise where we use 
unconstrained mean-variance to identify our style premia portfolio. You will notice that we have 
changed the output so that it is presented in relative terms. The ability of decoupling the 
optimization exercise from how we choose to view the results can at times be important. 
For example, we may want to see how a frontier constructed in a relative context looks like from 
an absolute risk perspective. Here, we see the benchmark (the S&P 500) is placed at zero return 
and zero risk as would be expected, given that this is a relative optimization exercise. The relative 
efficient frontier lies above and to the right of the benchmark. This is driven by the higher return 
estimates for the underlying ETFs. In this instance, the lowest risk (minimum tracking error) 
portfolio has been selected to present relevant portfolio characteristics. While this portfolio may not 
have the highest return, it is the portfolio that would be expected to track the S&P better than any 
other portfolio. 

As is indicated in the weight analysis section, this portfolio is comprised of 32.4% quality, 33.0% 
momentum, 14.1% high dividend, 4.4% low volatility and 16.0% value. Small cap exposure was not 
included at all. In the factor analysis section, we have drilled into the equity style factors and have 
switched to the exposure view to better understand our relative style factor exposures. As would be 
expected, we see several positive loadings that could be the key drivers of any outperformance.

In some cases, we may have priors about the ETFs that have been included or we may want 
to manually constrain portfolio asset exposures. In Figure C2b we present a second pass at this 
exercise where we employ the scenario capability to overlay how the frontier would look if we 
impose the constraint that the portfolio must hold at least 10% of each of the ETFs considered. 
As one would expect, the frontier in this example is less efficient. By selecting the lowest risk 
portfolio on this constrained frontier, we observe in the weights section that the portfolio conforms 
to the constraints. In addition, the solution has slightly higher relative risk (and lower relative 
return) compared with the unconstrained solution.
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Figure C2a: Relative risk optimization – Style-premia portfolio
Unconstrained relative mean-variance efficient frontier 
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Case 3: Relative risk optimization
Optimizing with a reference portfolio

A reference portfolio is a hypothetical simple diversified portfolio, implemented with passive, 
low-cost, liquid investments, designed to achieve specific investment goals. Reference portfolios are 
frequently used by pension plans as a baseline to measure investment performance and to manage 
risk in the pursuit of returns. The reason for the adoption of a reference portfolio framework is that 
it provides greater flexibility than bucketed benchmark approaches. In these situations, plans are 
faced with two options. First, they can construct an allocation and compare it directly to the 
reference portfolio in an absolute context. Alternatively, plans can develop portfolios using a relative 
optimization framework. The latter approach offers a few benefits when a plan seeks to avoid 
performance that deviates substantially from that of the reference portfolio. In this example, 
we assume the reference portfolio is comprised of 70% MSCI World Index and 30% Bloomberg 
Barclays Global Aggregate Index. We also assume that the asset owner has a broad array of assets 
at their disposal as they attempt to deliver higher returns than the reference portfolio. To simplify 
the exercise, we assume all assets, including the reference portfolio are currency hedged. 

Figure C3a shows the reference portfolio and a robust efficient frontier in an absolute risk context. 
Not surprisingly, based on our return assumptions, the efficient frontier indicates that we are able 
to produce a portfolio with either higher return for the same amount of risk as the reference 
portfolio or lower risk for the same amount of return as the reference portfolio. Selecting the 
higher return option, we notice that the actual portfolio, despite similar absolute risk levels, has 
meaningfully different factor exposures than the benchmark. This is a direct result of the optimizer 
finding allocations that have higher return with similar relative risk as it exploits various correlations.

In Figure C3b we consider the problem in relative terms. The reference portfolio now sits at the 
origin with no risk and no return. The figure also includes two frontiers. The dotted light-blue 
frontier is the frontier we created in the first figure but displayed on the relative axes. Interestingly, 
the relative risk (tracking error) of the portfolio we focused on in the top figure is close to 5%. This 
means that while the portfolio we chose may have similar risk as the reference portfolio, we should 
still be prepared for meaningful performance deviations. Plan sponsors may not be comfortable 
with such deviations, despite the higher expected returns.

To address the above challenge, we then go on to create a frontier that is efficient in relative risk 
terms which is indicated in solid blue. This frontier is more efficient than the absolute frontier with 
improvements becoming most prominent at lower relative risk levels. More specifically, we notice 
that we are now able to identify allocations that are expected to track the reference portfolio with 
less than 1% relative risk. By selecting the lowest risk allocation, we see that it is in fact comprised 
of an allocation that looks very similar to the underlying constituents of the reference portfolio (i.e., 
Treasuries, Corporates, MBS, US equities and EAFE equities). While this is encouraging, this point 
itself may not be of interest, as it also does not offer any excess return to the reference portfolio. 
However, as we move up the efficient frontier, we are able to identify solutions that are expected to 
outperform the reference portfolio while minimizing tracking error. For example, if we look directly 
to the left of the portfolio we evaluated in the context of absolute risk, indicated as the Optimal 
Absolute Risk Portfolio, we are able to identify a solution with the same return but with 1% lower 
tracking error.

It is important to note that this type of approach can be applied to other similar types of problems. 
For example, plan sponsors and corporate entities are often very sensitive to how they are 
positioned relative to their peers. In such cases, while they may not build their portfolio entirely 
around what their peers are doing, knowing how they are expected to perform relative to peers 
can provide meaningful insights and may also lead to a re-evaluation of some of their outlier bets.
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Figure C3a: Absolute risk optimization – Reference portfolio
Robust optimization without considering reference portfolio
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Case 4: Robust optimization 
Addressing estimation error in portfolio construction

A common criticism of unconstrained mean-variance optimization is that it can result in 
undiversified portfolios or portfolios with large asset concentrations. This behavior is a direct result 
of mean-variance optimization (MVO) being sensitive to small changes in input parameters. Return 
forecasts are especially problematic as they are the most influential drivers while also being most 
likely to be erroneous. To overcome issues with estimation error, practitioners will frequently 
impose constraints on assets which are believed to be most problematic. While this can produce 
more diversified portfolios, it can also lead to the application of arbitrary limits on portfolio weights 
that result in portfolios that aren’t necessarily optimal. To achieve more diversified MVO portfolios, 
we can use the Robust Mean-Variance approach introduced earlier in this paper. In this example, 
we consider an efficient frontier comprised of a small set of fixed income and equity indices and 
we compare unconstrained MVO portfolios in Figure C4a with their robust counterparts in Figure 
C4b. Specifically, we compare efficient portfolios with an expected return equal to that of an 
included existing portfolio. In both cases, we find that the same return can be achieved at lower 
levels of risk. 

The first, and most notable, point is that the allocations produced through robust mean-variance 
optimization are far more diversified across assets than those produced by MVO. This is the direct 
result of robust optimization’s explicit incorporation of uncertainty in return expectations. The return 
uncertainties reduce the dominance of returns in the overall optimization problem. Consequently, 
while mean-variance optimization allocates virtually all equity exposures to emerging markets equities 
(EM), robust mean-variance optimization diversifies equity allocations to also include US and 
developed market equities while still preserving its preference for EM. A similar pattern can be seen in 
the fixed income investments where corporates are added as part of the allocation at lower risk levels. 
It also interesting to note how the equal return portfolios produced by each approach differ. Examining 
the factor analyses for both examples, we see a move from equity factor exposure to more credit and 
rates. In the robust approach, this is achieved through a more diverse set of underlying assets.

The second point to note is that the efficient frontier is lower and shorter than its mean-variance 
counterpart. As we seek to diversify away from more concentrated MVO allocations, the resulting 
portfolios appear sub-optimal given that they include allocations to assets with less desirable 
characteristics in the MVO sense. However, these portfolios are expected to provide improved 
out-of-sample performance relative to the theoretically optimal MVO portfolios. Finally, we remark 
that the length of the robust mean-variance efficient frontier is less than the standard mean-
variance efficient frontier. This is also to be expected as the diversification inherent to robust 
mean-variance optimization limits the ability of the optimal portfolio to invest in any single asset 
class, as is necessary in this case, to reach the risk and return delivered by the highest risk MVO 
portfolio which allocates 100% of assets to EM.

A final observation is that the minimum variance portfolios are identical under both optimization 
frameworks. In both cases, the risk, the return and the underlying asset allocations are identical. 
This should come as no surprise as the minimum variance portfolio is entirely based on risk and 
correlations with no dependency on return estimates.
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Figure C4a: Unconstrained mean-variance optimization
Highlighting frontier portfolio with the same risk as the current portfolio 
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Highlighting frontier portfolio with the same risk as the current portfolio
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Case 5: Liability-driven investing 
LDI solutions for US corporate defined benefit plans

The first step in any LDI exercise is to obtain a full and detailed understanding of liabilities. 
In particular, two basic components need to be well understood: 1) the projected cash flows and 2) 
the discount curve that is used to value them. Once we successfully model the liabilities, we can 
then use them as a benchmark and employ relative optimization to construct frontiers that will 
maximize return for any given level of funding ratio volatility. In this example, we will look at 
a hypothetical US corporate defined benefit plan.

Figure C5a shows the liability worksheet where we can create generic or highly customized liability 
profiles. In the upper panel we have the choice of creating a generic cash flow schedule using 
Russell’s Standard Cash Flow Generator as well as manually defining a customized set of payments. 
Once we have defined the cash flow schedule, we can then select a discount curve from a list of 
various standard options. In this example, we use the FTSE pension discount curve which is 
commonly used for these types of plans. Finally, one last aspect to consider is liability specific risk. 
This is most relevant when discount curves have a credit component. Credit migration in these 
curves leads to risk that cannot be hedged. For a typical liability that is discounted with a AA curve, 
we will empirically set this value to 2%.

With the necessary components in place, we are then able to model the liability stream. In the right 
portion of the upper panel, we can see all of the factor risks and exposures. For example, this 
liability has meaningful interest rate risk, some credit risk and some specific risk. Drill in capabilities 
allow for a more detailed decomposition of the risks into sub-components such as key rates. We can 
also toggle between isolated risks, contribution to risk and the factor exposures themselves. Having 
calculated all the factor exposures, we have effectively translated the liability into a benchmark just 
like any other third-party benchmark that may now be used as a reference point for further asset 
allocation modeling exercises. The lower panel of Figure C5a provides additional details that 
summarize the liability characteristics. For example, the present value of the liability stream is $235 
million with only $18 million coming from cash flows beyond 30 years. The yield of the liability is 
4.08% which serves as a quick return bogey. The implied spread of the liabilities over Treasuries is 
115 bps and the effective duration is 13.7 years, which is close to the highest duration we can get 
in the physical cash market (excluding Treasury STRIPS).

Having modeled the liabilities, we can go back to the analysis worksheet shown in Figure C5b, where 
we can begin to focus on asset allocation modeling. For this example, we decide to employ five asset 
blocks: Intermediate Corporates, Long Corporates, Intermediate Treasuries, Long Treasuries, 
Treasury STRIPS (15+ years) and the S&P 500. The fixed income blocks have been selected to allow 
us to introduce varying levels of duration and credit exposure, both of which are key ingredients of 
the liabilities. The S&P 500 acts as our growth asset. The frontier shown in the left portion of the 
upper panel indicates portfolios with the highest possible return for a given level of funding ratio 
volatility. In this instance, we have also chosen to focus on a relatively low risk point on the frontier 
that is comprised of Long Corporates, Treasuries, and some allocation to the S&P 500. Here, the 
S&P 500 is what drives the return higher than the liabilities while the fixed income components are 
reducing the funding ratio volatility by adding duration and credit exposure. In the upper right 
portion of the panel, we can also see the relative factor risks which are mostly skewed to equity and 
credit risk as we seek to outperform the liability. The lower panel of Figure C5b overlays the 
projected cash flows of the assets and the liabilities. As can be seen, there is a cash deficit in the 
short term and a cash surplus around the 25- to 30-year portion of the schedule. This is the direct 
result of seeking to minimize duration mismatches with only a fraction of the assets and investing the 
rest in equities. While appearing somewhat counterintuitive, this is the solution that best minimizes 
funding ratio volatility while seeking to exploit the benefits of growth assets. 
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Case 6: Liability driven investing 
LDI solutions for UK defined benefit plans

Working with UK defined benefit plans has many similarities, as well as some differences, compared 
to US and other global oriented liability exercises. On the similarity side, we still need two key 
ingredients: 1) the projected cash flows and 2) the discount curves used to value them. Regarding 
the more unique characteristics, UK DB plans will also include inflation-linked cash flows in addition 
to the typical nominal cash flows as dictated by the UK pension system. To address this, we allow 
for both types of cash flows and also introduce the corresponding required real rate curves. 

Figure C6a shows the liability worksheet where we can enter both nominal and inflation linked cash 
flow streams. We then need to select the corresponding discount curves. In most situations this will 
be the nominal and real Gilt curves. In addition, and mostly for research purposes, we introduce a 
“multiplier” option that can be used to scale the relative magnitude of the two types of cash flows. 
For UK plans, the specific risk component is not relevant since the discount curves are based on 
sovereign yield curves that are not susceptible to the credit migration risks associated with the US 
corporate discount curves.

The right portion of the upper panel of Figure C6a summarizes all of the resulting factor risks. 
As can be seen, the liabilities have both nominal and real rate exposure with no credit exposure 
or specific risk associated with them. Drill in capabilities allow us to further analyze the liability 
exposures in terms of nominal and real key rate durations. In this example, the liabilities have more 
real rate risk than nominal rate risk. This is primarily driven by the longer duration of the real cash 
flows. The lower panel depicts the underlying cash flows including their future values and present 
values. Future values are further decomposed into those originating from the nominal cash flow and 
the real cash flows. Since the real cash flows are expected to grow with inflation, a “real cash flow 
expected inflation” component needs to also be added and is computed based on break-even rates. 
Finally, the analytics section of the lower panel summarizes the key liability characteristics. The 
analytics are presented separately for each type of cash flow. For example, the yield of the nominal 
cash flows is 1.65% while the real yield of the inflation-linked cash flows is -1.59%. Similarly, the 
duration of the nominal cash flows is 13.6 years while the duration of the inflation-linked cash flows 
is 17.2 years.

With the liabilities fully modeled, in Figure C6b we look at how we can create efficient portfolios 
relative to the liabilities themselves. In this example, we create a simple asset universe comprised 
of the Intermediate Gilt Index, the Long Gilt Index, the Inflation linked Gilt index and MSCI UK 
equities. Observing the underlying asset allocation along the frontier we notice that the lowest 
risk solution is comprised of a blend of Long Gilts, Intermediate Gilts and inflation linked Gilts. 
This should come as no surprise as the optimizer seeks to most closely match the liability exposures 
with the provided blocks. It is of interest to note is that the lowest risk solution has lower tracking 
error than what we saw in the US plan case. This is driven by the discount curve not including a 
spread exposure, making it easier to more closely match liabilities. Finally, as we move along the 
efficient frontier we gradually see the Intermediate Gilt block is phased out. This is a direct result 
of the optimizer opting for more duration in the Long Gilt block as the overall allocation to fixed 
income is moved into equity. It is important to note that in a more real-world situation, derivatives 
such as interest and inflation swaps could be used to further improve the depicted efficient frontier.
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Figure C6a: Liability-driven investing – UK defined benefit plan
Liability analytics 

Type ≤ 30 year › 30 year Total
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Figure C6b: Liability-driven investing – UK defined benefit plan
Liability relative efficient frontier
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Case 7: Cash flow driven investing 
Creating cash flow matched portfolios 

In this example we examine how to create a buy-and-hold portfolio that can defease a pre-specified set 
of liabilities. We assume six cash flow payments that span 6 years. We also assume that the investible 
universe is comprised of the defined maturity (DM) corporate bond ETFs as well as some hypothetical, 
similarly structured Treasury blocks. Solving this problem requires the use of the cash flow optimizer.

In the upper panel of Figure C7a, we can see the efficient frontier in the context of this problem. 
By definition, the frontier is relative, while the axes demonstrate the key trade-offs: the portfolio 
relative cost versus the portfolio quality.* The first thing to notice is that the efficient frontier slopes 
downward, becoming cheaper as we reduce the overall rating. This is expected, as a lower quality 
portfolio will have a higher yield, being able to produce the desired cash flows at a lower cost. 
A second thing to notice is that the highest quality portfolio on the frontier has a cost that is 
marginally higher than the present value of the liabilities. This should also come as no surprise, as 
the cash flows generated by the investible blocks do not perfectly align with the liability cash flows. 
This leads to some drag as we re-invest any mismatches at the cash rate.

The lower panel of Figure C7a shows the composition of the frontier. All the way to the left with 
AAA quality is a portfolio comprised entirely of Treasuries. As one would expect, as we relax the 
rating constraint, moving to the right, the portfolio allocations gradually shift from all Treasuries 
to all maturity defined strategy. This allows the portfolio to become cheaper. Another thing to 
notice is the sequence by which blocks of various maturities are transitioned. The first Treasury 
blocks to be replaced by maturity defined corporates are the longest maturity ones. This is because 
the longest maturity blocks have the biggest impact on the overall cost of the portfolio.

In Figure C7b, we compare the asset cash flows to the required cash flows for the selected lowest 
rated portfolio. As expected, given the discrete nature of the investible blocks, the annual cash flows 
do not appear to be perfectly aligned. However, the cumulative cashflows, shown on the right of the 
figure, indicate that at no time was there a cash flow deficit. This is at the core of the optimization 
algorithm where we ensure that we never need to sell any assets to defease the liabilities.

Finally, for non-fixed income assets, any expected cash flows can also be included in the analysis 
and visualized in different colors. For example, if equities were included, their dividend yield would 
be part of the analysis. Furthermore, other more ambiguous income generating assets can also be 
added based on user specified income generation estimates.

* In this example, we discounted the cash flows using the Treasury curve to derive the portfolio relative cost.
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Figure C7a: Cash flow driven investing
Cost versus quality frontier
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Case 8: Portfolio construction with alternative assets 
Evaluating opportunities for improved risk-adjusted returns

In this case, we examine the impact of introducing alternative assets into a typical multi-asset 
portfolio. More specifically, we start by considering an efficient frontier comprised of a small set of 
fixed income and equity indices. We then consider a scenario where we allow for the inclusion of a 
handful of alternative asset classes, including Private Equity, Private Real Estate, Infrastructure, and 
Mezzanine Debt. This allows us to directly evaluate the impact of including alternatives. Also, given 
the complexities that are often involved with developing return, risk, and correlation estimates for 
illiquid asset classes, we have chosen to conduct the analysis using robust mean-variance 
optimization. This results in portfolio allocations that are more diversified and less susceptible to 
return estimate uncertainty. This also helps to avoid highly concentrated weights to alternatives that 
result as a function of their attractive risk to return characteristics. We have included a hypothetical 
portfolio that does not include alternative assets for comparison purposes. 

In Figure C8a, the first thing to note is that the scenario efficient frontier that includes the 
alternative asset classes sits above the frontier of only traditional assets. This is to be expected as 
several of the alternative assets have higher expected returns as well as low correlations with the 
traditional assets. Second, when we examine the factor analysis for the selected efficient portfolio 
on the scenario frontier, we see that it provides the same return as the current portfolio with much 
better diversification across the macro factors. In this allocation, there is a very meaningful 
reduction in the equity risk that is replaced by direct real estate, pure private equity, and credit 
factor exposures. Finally, it is interesting to note that the exposure to alternatives is actually higher 
than public equities across the entire frontier. This could be a concern for an investor that has 
significant liquidity requirements. In such a situation, we could impose a constraint on the maximum 
allowable allocation to alternatives.

In Figure C8b, we present the underlying correlations for the asset universe considered. As can be 
seen, the correlation of alternatives with the other growth-oriented assets is lower than the 
correlations of the original growth assets among themselves. This is a direct result of the illiquid and 
idiosyncratic nature of these assets. It is interesting to note, however, that during stressed periods, 
such as during the Global Financial Crisis, the correlation of alternative assets with traditional assets 
does tend to increase. While this suggests that the benefits of alternatives may be somewhat 
overstated during stressed financial periods, there are benefits to investing in assets that provide 
access to a broad and differentiated set of return sources.
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Figure C8a: Portfolio construction with alternative assets
Comparison of frontiers with alternative investments (scenario frontier) and without (frontier)

Figure C8b: Correlations of traditional and alternative assets
Comparison of alternative asset correlations on average and during the Global Financial Crisis
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Case 9: Portfolio evaluation 
Considering historical and hypothetical scenarios 

As we construct outcome-oriented solutions, it is important to understand how such solutions might 
perform in various market conditions. Two types of analyses are particularly useful for such 
exercises. First, we look at how a portfolio would have performed during specific historical periods 
such as the GFC, Brexit, and the tech crash. Second, we look at how a portfolio would perform under 
various hypothetical market shocks, such as a 15% decline in global equities or a 100bps interest 
rate rise. For the purposes of this example, we consider a hypothetical efficient portfolio as compared 
to an existing portfolio and benchmark.*

Figure C9a focuses on the historical scenario analysis. Historical analyses rely on a set of specific 
time periods and their associated factor returns. Here, the current portfolio factor exposures are 
multiplied by the factor returns during the specific historical period so as to estimate what the 
return would have been during the respective period. It is important to recognize that the resulting 
performance represents the portfolio’s performance given its current positioning and how it would 
have theoretically performed during such a historical period and not how it actually performed if it 
existed at the time. The figure demonstrates the selected portfolio’s expected performance with 
blue bars as well as the original portfolio and benchmark expected performance with pink and gray 
dots, respectively.

As can be seen in the figure, the selected efficient frontier portfolio seems to do better than the 
original portfolio and the benchmark under almost all historical scenarios. The outperformance 
should come as no surprise as the portfolio was specifically optimized to have a lower risk. 
However, it is interesting to take a closer look at two cases where the selected portfolio did not do 
as well – 2004 and 2006 EM crises. To help understand why, in these cases the optimized portfolio 
was diversified away from US equities into a more balanced allocation with increased EM exposure. 
With emerging markets being at the heart of these historical periods, it should be expected that the 
optimized portfolios did not do as well as the original portfolios.

Figure C9b goes on to focus on the hypothetical scenario analysis. Here we have the option of 
performing the analysis in an uncorrelated or correlated mode. The difference between the two 
approaches is that in the uncorrelated mode only the shocked factors influence the performance 
of the portfolio, while in the correlated case the specified factor shocks are propagated to the 
remaining unspecified factors through their factor covariance structure. In this example, we 
demonstrated the correlated mode. Similar to the historical scenarios the performance of the 
selected portfolio as well as the original portfolio and the benchmark are shown. In almost every 
case, the optimized portfolio seems to perform better than both the original portfolio and the 
benchmark, as we would hope to see.

A particularly useful feature of both types of scenario analysis, shown in the lower part of each 
figure, is the ability to decompose the projected returns into underlying factor components. This 
allows us to more accurately determine the driving forces behind the observed performance and 
use this information to adjust the portfolio as may be desired. A subtle but important point to make 
here is that the analytics used to estimate a current portfolio’s performance, either historically or in 
a hypothetical scenario, do not include second order pricing effects such as convexity or optionality.

* In this example, we use portfolio information from Case 4 where we compare the Equal Return Portfolio to an existing 
portfolio and a benchmark.
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Figure C9a: Historical scenarios
Assuming uncorrelated sensitivities

Scenario (excluding non-linear re-pricing effects) Historical        Uncorrelated      

 Benchmark   Portfolio  
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Private Equity 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Total -3.68 -4.18 -6.46 -6.77 -15.90 -6.79 -7.44 -34.22 -3.99 -8.68 -2.59

Figure C9b: Hypothetical scenarios
Assuming correlated sensitivities

Scenario (excluding non-linear re-pricing effects) Hypothetical      Correlated       
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Case 10: Currency hedging 
Addressing currency risk

Invesco Vision has been designed to work with various base currencies and best represent the 
interests of clients across various economic regions. Whenever currencies are involved, two 
different issues need to be addressed. First, we need to be able to adjust return expectations to 
the relevant base currency, and second, we need to address any embedded currency risks. For the 
former, we rely on an interest rate risk parity model which implies that currencies will appreciate/
depreciate by the same amount as the respective sovereign interest rate differentials. For the latter 
we rely entirely on the risk model covariance matrix.

To demonstrate these ideas in practice, we start by constructing an example based entirely on 
USD-denominated asset blocks as shown in left portion of Figure C10a. Here we are viewing the 
assets from a USD perspective and there is no embedded currency risk. As can be seen, the 
efficient frontier begins at low risk levels, comprised almost entirely of the US Aggregate bonds and 
gradually adds other components such as equities and high yield to further increase the return.

We then move to the right portion of Figure C10a. Here we change the base currency to EUR. 
More specifically, we assume that a European based investor is looking at the same exact asset 
blocks as before and is using them to construct a EUR-based efficient frontier. There are several 
things to notice. First, the returns associated with all of the asset blocks and the efficient frontier 
itself are lower. This is a direct result of higher USD interest rates implying a future depreciation 
of the dollar vs the euro as dictated by the interest rate parity model. Second, all risk values are 
meaningfully higher. This is also to be expected as the portfolio now encompasses currency risk. 
Finally, the asset allocation structure along the efficient frontier is slightly different. This is due 
to the optimizer exploiting currency factor correlations to improve the risk-return trade-off.

Figure C10b proceeds with the same asset blocks, continuing to view the problem from a EUR-
based perspective. However, in this case we assume that all assets are currency hedged to the EUR. 
There are a few things to notice. First, the expected returns remain unchanged at the lower levels 
we observed in the previous unhedged example. This is dictated by the way currency hedging 
works. More specifically, the modeled cost of currency hedging is based on the very interest rate 
differentials we used to project how we expect exchange rates to evolve. So, while we get to the 
return adjustment through a different path, the resulting adjustments are identical. The second 
and most interesting feature of the efficient frontier is that the underlying asset allocation is now 
identical to the original USD based asset allocation. Putting the two observations together, we can 
conclude that the impact of switching to a different base currency, combined with full currency 
hedging,only results in a vertical shift of the efficient frontier. The extent of the shift is dictated 
by the interest rate differential between the two currencies.
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Figure C10a: Currency hedging
Unhedged USD- and EUR-based efficient frontiers 

Figure C10b: Currency hedging
Hedged EUR based efficient frontier
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Case 11: Portfolio analysis with regulatory considerations
Solvency II

Invesco Vision has been designed to address both economic risk focused challenges, as well as 
those presented by regulatory requirements. There is no better example for showcasing this 
capability than with an insurance entity. Here we examine a UK-based insurer that is subject to 
Solvency II. For reasons of simplicity, we do not include a liability in the exercise, even though this 
could readily be done. We assume the insurer is looking to invest in some basic asset classes such 
as sovereign bonds, corporate bonds, direct real estate, and equities.

In the top panel of Figure C11a, we showcase a Solvency II based efficient frontier for a set of 
selected benchmarks. We also include a hypothetical portfolio that is mostly comprised of Gilts and 
GBP corporate bonds with a small allocation to Sovereign EM, UK equities and UK property. As can 
be seen, the frontier looks very similar in shape and spirit to a typical economic efficient frontier, 
with the main difference being that risk is now measured in terms of solvency capital requirement 
(SCR) charges. To create the frontier, we employ the published Solvency II correlation matrices 
under both negative and positive interest rate shocks. In this case, since there is no liability 
benchmark, the positive interest rate shock will be used across the entire frontier as it leads to the 
highest SCR charges.

In the lower panel of Figure C11a, we showcase the Solvency II SCR decomposition for three of the 
indices. Here, the UK Corporate block has SCR charges which stem from both interest rate exposure 
and spread exposure. The interest rate exposure is computed based on re-pricing the index based 
on EIOPA prescribed shocks for the UK sovereign curve. The spread exposure is computed based 
on the underlying bond spread durations and ratings, as dictated by the governing bodies. The real 
estate block is only exposed to the private real estate charges of 25%. In this example, we have 
assumed an unlevered property holding so there is no increase in charges due to leverage. In the 
case of a typical direct real estate fund, this would unlikely be the case. Finally, we show the 
Sovereign EM block that is exposed to interest rate charges, spread charges and foreign exchange 
charges as the bonds are denominated in USD and the based currency in GBP.

In Figure C11b, we revert to the standard economic risk and return axes. Here we can see that, in this 
context, the corporate index is showing up with lower risk than the Gilt index as dictated by its lower 
duration and negative correlation between spreads and rates. The Sovereign EM block is also showing 
up with lower relative risk than what we saw in the SCR framework. This is driven by the lower implied 
risk due to currency exposure. Finally, it is interesting to note the difference between the economic 
efficient frontier and the Solvency II frontier when viewed through the economic risk lens. It is evident 
that the two frontiers are noticeably different. If we dig deeper into the accompanying allocations, 
we will notice that the SCR frontier generally avoids the available spread assets while the economic 
frontier seeks them, especially in the lower risk solutions. These types of trade-offs are typical for 
these kinds of problems and will ultimately come down to what is most important to the investor and 
the level of improvement beyond which only trivial changes are observed.

EIOPA = European Insurance and Occupational Pensions Authority
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Figure C11a: Efficient frontier - Solvency II
Solvency capital requirement efficient frontier 
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Case 12: Portfolio analysis with regulatory considerations 
US Risk-Based Capital (RBC) 
National Association of Insurance Commissioners (NAIC)

In this example, we are evaluating a portfolio within the context of economic risk as well as US 
Risk-Based Capital (RBC) charges. To better understand the extent of efficiency for the portfolio, 
we are also creating efficient frontiers within both frameworks.

Looking at the upper panel of Figure C12a, an RBC-efficient, low-risk portfolio would consist almost 
entirely of agency mortgage backed securities. However, this is a very concentrated portfolio; 
intuitively, a more diversified asset allocation should be the goal. Supplementing the analysis with 
an economic efficient frontier will tell us what a more diversified portfolio could look like.

The lower panel in Figure C12a shows the result of an optimization based on economic risk. Here 
we see a more diversified allocation with meaningful investments in high yield bonds, emerging 
market debt and private equity. However, these asset classes entail significantly higher RBC 
requirements, and insurers have limited capital budgets for their investment portfolios. Considering 
this, along with the first figure, it is clear that trade-offs must be made to balance both economic 
and RBC perspectives.

Figure C12b plots a representative insurance portfolio that is commonly seen in practice. Note this 
portfolio falls between the economic and RBC frontiers, highlighting the trade-offs mentioned above 
that are typically made in the real world. But can this portfolio’s efficiency be improved?

One important aspect of the RBC framework in the US is its punitive treatment of commingled fund 
investments. This is true even for high-quality bond funds. One could argue that a portfolio of 
investment grade bonds held via a mutual fund should be assigned the same capital charge as an 
identical portfolio held via a direct separate account, but absent a fund-level NAIC designation, the 
RBC framework assigns an equity capital charge to the bond mutual fund. This is one reason insurers 
strongly prefer direct separate account investments whenever possible. Figure C12b also shows the 
improvement in RBC efficiency when the initial portfolio’s bond fund investment is moved to a direct 
separate account implementation.
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Figure C12a: Portfolio construction with regulatory considerations – Risk-based capital (RBC)
Efficient frontiers based on RBC (top) and economic risk (bottom)
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Figure C12b: Hybrid RBC/economic risk portfolio
RBC impact of fund-based versus direct investment – Investment grade bond

Efficient frontier Weight details

• RBC frontier  • Economic risk frontier

PE US LBO

US LC eq

Muni

RBC (%)

Portfolio (bond fund)
Portfolio (bond direct)

IG bond direct

IG bond fund

HF US MCRO
Corp bond

US CMBS

Trsy bond
US MBS

JPM EMBI div
High yield

1

2

3

4

5

6

7

8

0 10 20 30 40
Weight (%)

HF US MCRO
PE US LBO
US LC Eq
JPM EMBI Div
Muni
High Yield
US CMBS
US MBS
Corp Bond
IG Bond Fund
Trsy Bond

G
eo

m
et

ric
 r

et
ur

n 
(%

)

0 5 10 15 20 25 30



58

Case 13: Model portfolio analytics 
Evaluating target-date funds

The use of model portfolios within retail and defined contribution plans is becoming prevalent. 
The approach offers pre-packaged, single-fund solutions that are constructed to help investors 
achieve their investing objectives. These solutions are frequently structured in the form of target 
date portfolios, where allocations become increasingly aggressive as target dates extend further 
into the future. In this case, we examine a set of target date fund series from 2020 to 2060. We 
discuss some key pitfalls to be cognizant of as well as some relevant practical capabilities provided 
by Invesco Vision that allow for easy comparisons of the different solutions.

In Figure C13a we present the five hypothetical target date portfolios. The blue dots indicate how 
these portfolios look when measured using expected arithmetic returns while the purple dots show 
the results in terms of geometric (compound) returns. First, we examine the portfolios in arithmetic 
return terms and notice how the shorter-term portfolios have lower total risk and lower expected 
return than their longer-term portfolio counterparts. We also see how the expected returns of the 
portfolios are rising at a rather linear pace as we move from shorter to longer dated solutions. 
We then examine the portfolios in geometric terms. Here, we notice that while the longer-dated 
portfolios show increasing levels of risk, they offer only marginal benefits in terms of expected 
return. This is driven by the volatility drag that is expected from these more aggressive solutions. 
In this context, it is unclear whether the 2060 portfolio should ever be preferred over the 2050 
portfolio. The expected return pickup in geometric terms is a mere 19 bps while risk increased by 
over 120 bps.

In Figure C13b we present the underlying isolated factor risks, contributions to risk, along with fund 
asset class weights. As can be seen, the shorter dated portfolios have a heavy weight to credit and 
rates while the longer dated portfolios are increasingly reliant on equities. This can be seen in terms 
of both weights as well as in isolated risk. The contribution to risk makes this apparent shift even more 
transparent where equity drives more than 95% of the total portfolio risk for the 2060 portfolio. 
While this is not necessarily a bad thing, especially for the very long dated solutions, this level of 
transparency can help provide valuable insights regarding how the portfolio is expected to behave.
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Figure C13a: Model Portfolios
Expected arithmetic and geometric returns
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Figure C13b: Portfolio characteristics
Portfolio weights, isolated risk, and contribution to risk
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Case 14: Return agnostic solutions 
Portfolio construction without expected returns

While it is common practice to create portfolios through some form of mean-variance optimization, 
there are several other approaches that can be employed. Most of the approaches are aimed at 
eliminating the dependence on expected returns, which are the hardest optimization inputs to 
forecast correctly. In this example, we construct five such portfolios: equal weight, equal volatility, 
equal risk contribution, max diversification and global mean variance. To keep the example simple 
while trying to get exposure to a diverse set of factor exposures, we use three assets: US Large Cap 
(S&P 500), US Long Treasuries (Bloomberg Barclays Long Treasury) and Commodities (Goldman 
Sachs Commodity Index). 

In Figure C14a, we chart the individual assets, the five return-agnostic portfolios, and the mean-
variance efficient frontier with total risk (standard deviation) on the x-axis and geometric mean on the 
y-axis. What is immediately evident is that, while many of the return agnostic portfolios are near the 
mean-variance efficient frontier, the only portfolio that truly resides on the frontier is the global 
minimum variance portfolio. This reminds us that we can always construct an efficient portfolio that 
has the minimum risk without requiring any views on expected returns. The lower portion of Figure 
C14b summarizes the asset weights, isolated risk and contribution to risk for each of these solutions. 

The simplest portfolio to create is the equal weight solution. In this case, the weights are simply 
derived by dividing 100% by the number of assets. An examination of the isolated risk and 
contribution to risk for this portfolio shows that even though the portfolio appears to be well 
diversified, commodities play an oversized role in the risk of the portfolio. This is a function of the 
amount of risk for each of the assets included. It should be noted that while the notion of this type 
of naïve diversification can be of interest, investors should evaluate the assets to be included 
carefully. Consider a three-asset equal weight portfolio where two assets are close substitutes, such 
as a S&P 500 ETF, a Russell 1000 ETF and a US Aggregate bond ETF. In such an instance, naïve 
diversification may actually lead to greater concentration and a higher exposure to risk than might 
be expected. 

The equal risk, or risk-parity portfolio as it is sometimes called, is also a straightforward solution 
with the weights being set to be inversely proportional to the asset volatility. In this case, we see 
how the commodities sector gets the lowest weights, followed by stocks, and then bonds.

We then move to the portfolios whose weights can no longer be algebraically derived. First, we look 
at the equal risk contribution portfolio. This solution differs slightly from the equal risk solution, as it 
also considers asset correlations. As can be seen, the isolated risks are no longer the same, with 
commodities having the least isolated risk.

Moving to the maximum diversification solution which has the objective of maximizing the 
diversification ratio. This ratio is defined as the weighted average of the volatilities divided by the 
portfolio volatility. Here we see how stocks and commodities both have lower isolated risk and 
contribution to risk than fixed income. 

Finally, we examine the global minimum variance portfolio. The objective here is to identify the 
portfolio with the lowest risk. This approach has recently received significant attention, specifically 
when looking at constructing portfolios within a specific asset class. The reason for the increased 
interest in this approach is that adacemic literature has put forward the idea that such a portfolio may 
not only exhibit lower risk, but it may also offer a premium. This may not necessarily be the case 
within a multi-asset context and in most cases. We treat this solution mostly as a reference point. 

All of these portfolios can be viewed as reasonable options to consider when there is low confidence 
in the ability to effectively forecast expected returns and should be part of an investor’s toolkit. 
They can also be useful as a reference for comparison for portfolios under consideration.
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Figure C14a: Return agnostic solutions with mean-variance efficient frontier
Return and risk comparison
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Figure C14b: Portfolio Characteristics
Portfolio weights, isolated risk, and contribution to risk
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Case 15: Multi-period optimization 
Creating portfolios to meet multi-period goals

The goal planning module allows users to create multi-period solutions. Unlike other analyses that 
entail a constant asset allocation over time, the goal planning module allows for time varying 
allocations. This is particularly important in the presence of expected inflows or outflows. Once the 
user has identified the investible universe, they can then define their investment horizon, along with 
any expected cash inflows and outflows, and select their risk measure of interest. It is important to 
note that in these types of problems, the distribution of terminal wealth outcomes may be 
meaningfully different from that of a normal or lognormal distribution, which makes the choice of 
risk measure particularly important.

Figure C15 presents a specific example where we assume starting capital of $1,000,000 with annual 
inflows of $300,000 per year for 10 years followed by $300,000 per year outflows for 10 years. 
The objective in this example is to maximize the expected wealth at the end of 20 years subject to 
the specified cash flows for various levels of terminal wealth uncertainty. On the asset side, our 
investment opportunity set includes US large cap equites, non-US developed market equities, US 
aggregate bonds and cash.

The top panel of Figure C15 demonstrates the resulting frontier in terms of expected terminal 
wealth and the accompanying volatility in terminal wealth. As we would expect, higher terminal 
wealth values are associated with more risky outcomes. The second panel shows the composition 
of the frontier at inception. This is the allocation that would be pursued at the start of the exercise. 
The third panel goes on to depict the glidepath associated with the selected point on the efficient 
frontier. This glidepath depicts how the asset allocation should evolve over time to best achieve the 
desired outcome. 

As we examine the glidepath in more detail, there are several things to notice. First, at inception, 
the glidepath entails an allocation which is identical to the one shown in the second panel. 
The glidepath can effectively be thought of as a third dimension to the second panel. Second, 
and most importantly, we notice that the glidepath entails a period of de-risking prior to the cash 
outflows. This is very much in line with what we recommend as practitioners to an individual 
approaching retirement. The logic behind this gradual transition is that as we approach retirement 
and invested capital is increasing, risk needs to be reduced before outflows begin. The optimizer 
seeks to mitigate the impact of an instance where the retirement period begins with a significant 
market downturn. Something like this would prove very costly from a terminal wealth perspective. 
It is preferable to accept greater risk earlier in the investment horizon than at this critical point.

It is also important to notice that while the glidepath illustrates how the allocation is expected to 
evolve, the realized glidepath may evolve quite differently. Namely, the optimal asset allocations 
shown represent the average allocations to implement at any particular point in time. Optimal 
investment weights may follow another glidepath that is a function of actual portfolio value and 
market conditions through time. 

Finally, in the bottom panel of Figure C15, we show the expected wealth distributions through time. 
The distributions graphically represent the likelihood of the portfolio’s value as a function of time 
and provide intuition on the evolutionary nature of the investment problem.
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Figure C15: Multi-period optimization
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About Invesco Investment Solutions
Invesco Investment Solutions is an experienced multi-asset team that seeks to deliver purposeful 
outcomes using Invesco’s global capabilities, scale and infrastructure. We partner with our clients to 
fully understand their goals and harness strategies across Invesco’s global spectrum of active, passive, 
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construction process.
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Investment risks
The value of investments and any income will fluctuate (this may partly be the result of exchange rate fluctuations) 
and investors may not get back the full amount invested. 

Diversification and asset allocation do not guarantee a profit or eliminate the risk of loss.
 Invesco Investment Solutions (IIS) develops Capital Market Assumptions (CMAs) that provide long-term estimates for the 
behavior of major asset classes globally. The team is dedicated to designing outcome-oriented, multi-asset portfolios that 
meet the specific goals of investors. The assumptions, which are based on 5- and 10-year investment time horizons, are 
intended to guide these strategic asset class allocations. For each selected asset class, IIS develop assumptions for estimated 
return, estimated standard deviation of return (volatility), and estimated correlation with other asset classes. Estimated 
returns are subject to uncertainty and error, and can be conditional on economic scenarios. In the event a particular scenario 
comes to pass, actual returns could be significantly higher or lower than these estimates.

This information is not intended as a recommendation to invest in a specific asset class or strategy, or as a promise of 
future performance. Refer to the IIS CMA methodology paper for more details.

Important information
 This document is marketing material and is not intended as a recommendation to invest in any particular asset class, 
security or strategy. Regulatory requirements that require impartiality of investment/investment strategy recommendations 
are therefore not applicable nor are any prohibitions to trade before publication. The information provided is for illustrative 
purposes only, it should not be relied upon as recommendations to buy or sell securities. 
 By accepting this document, you consent to communicate with us in English, unless you inform us otherwise. This 
overview contains general information only and does not take into account individual objectives, taxation position or 
financial needs. Nor does this constitute a recommendation of the suitability of any investment strategy for a particular 
investor. It is not an offer to buy or sell or a solicitation of an offer to buy or sell any security or instrument or to participate 
in any trading strategy to any person in any jurisdiction in which such an offer or solicitation is not authorized or to any 
person to whom it would be unlawful to market such an offer or solicitation. It does not form part of any prospectus. All 
material presented is compiled from sources believed to be reliable and current, but accuracy cannot be guaranteed. As 
with all investments, there are associated inherent risks. Please obtain and review all financial material carefully before 
investing. Asset management services are provided by Invesco in accordance with appropriate local legislation and 
regulations. The opinions expressed are those of Invesco Investment Solutions team and may differ from the opinions of 
other Invesco investment professionals. Opinions are based upon current market conditions, and are subject to change 
without notice. Performance, whether actual, estimated, or back-tested, is no guarantee of future results. 
 All information is sourced from Invesco, unless otherwise stated. All data as of April 15, 2019 and is USD and hedged 
unless otherwise stated. 
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This document may contain statements that are not purely historical in nature but are "forward-looking statements," which 
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