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Portfolio construction
Absolute risk optimization
Given a vector of expected annualized arithmetic returns μ that are determined through our capital 
market assumption process, and an annualized asset level covariance matrix ΣA that is derived from 
either our economic, Solvency II, or NAIC risk model, our basic goal in absolute risk optimization is 
to minimize the absolute portfolio risk for any given portfolio return.  

Mathematically, the problem is to find the best collection of investment (or portfolio) weights W* 
that satisfies:

for a collection of values  . Additionally, we may simultaneously require that each 
portfolio weight fall within a range of acceptable values, i.e.,  N and also require 
that sum of the portfolio weights meet a required budget, i.e.,  Typically, we take the 
value of the budget to be 1 meaning that the portfolio weights add to 100%.

Relative risk optimization
Relative risk optimization is a very similar problem to absolute risk optimization, only that in the 
relative risk case we seek to minimize risk relative to a benchmark or reference asset for any given 
portfolio return. We treat this problem as being long the portfolio and short the benchmark. 
Mathematically, the problem may be written as: 

where the optimal weight vector is now of the form:

and the return vector is express as being relative to the benchmark:

As in the absolute risk optimization problem, the "μ" is the absolute return for the portfolio and μb 
is the return of the benchmark of interest. Similar to how we converted the factor covariance matrix 
into an asset level covariance matrix (see page 17) we create the relative covariance matrix as 
shown below: 

where Σf is the factor covariance matrix, i.e., the matrix of covariances between the risk model’s 
factors and Λrel is the relative specific risk matrix. In Figure 31 we illustrate the translation of the 
nearly 4,000 by 4,000 factor covariance matrix to the benchmark relative asset covariance matrix.

Figure 31: Reducing the large factor covariance matrix to the smaller asset level covariance matrix
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Source: Invesco, BarraOne.
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Robust mean-variance portfolio optimization
A mean-variance optimal portfolio is one that minimizes risk for any given portfolio return. 
However, unconstrained mean-variance optimization (MVO) can exhibit characteristics that are 
undesirable for some investors. For example, if some of the assets are close substitutes, asset 
weights can be unstable, i.e., a small change to the expected returns yields substantially different 
asset weights even though the distribution of returns provided by the portfolio is likely to be only 
marginally affected. 

Additionally, unconstrained MVO can result in portfolio allocations that are highly concentrated in 
a single asset or across a small number of assets. In this sense, the basic implementation of MVO 
is not robust to the likelihood of errors in the estimation of expected returns and exposes investors 
to the possibility of overweighting underperforming assets. For at least these reasons it may be 
desirable, if not necessary, to modify the basic MVO framework.

Ceria and Stubbs (2006) have carefully considered the fundamental issues addressed above and 
have reformulated the MVO problem. At the heart of their modified portfolio optimization process, 
which they call Robust Mean-Variance Optimization, is the further incorporation of the uncertainty 
of the expected, or forecasted, returns. They start by assuming that the actual returns the portfolio 
will realize reside within an uncertainty ellipsoid of known size surrounding the expected returns. 
This is formulated as follows and is also visually depicted in Figure 32.

Where  and  is the inverse cumulative distribution function of the Chi-squared 
distribution with n degrees of freedom. Finally,  is the uncertainty covariance matrix, not to be 
confused with the asset return covariance matrix, .

Using the above, the Robust MVO problem can be formulated as follows:

A

for a range of candidate values  and require that the asset weights satisfy lower and 
upper bounds and add to a portfolio weight budget of 100%. In this s etting, a penalization term 
(the second term in the above return constraint involving the square root) has been added to the 
return target constraint. By incorporating a relatively simple penalty term, the portfolio optimization 
process can account for expected return uncertainties, becoming less sensitive to small changes in 
forecasts, and providing optimal asset allocations that are more diversified than those provided by 
unconstrained MVO.

Figure 32: Uncertainty ellipsoid showing the distance between the actual and forecasted returns
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Return agnostic solutions
Given a set of assets, an investor may be interested in identifying possible allocations that are not 
reliant on return forecasts such as an equal weighted portfolio, an equal volatility portfolio, an equal 
risk contribution portfolio, a maximum diversification portfolio, or a global minimum variance portfolio.

Each of the above solutions require varying amounts of forecasted information ranging from 
no information (equal weight), to asset risk estimates (equal volatility), and finally, covariance 
estimates (equal risk contribution, maximum diversification, and global minimum variance). Figure 
33 summarizes the data requirements and the corresponding mathematical formulations for each 
of the return agnostic solutions.

Figure 33: Inputs required for various portfolio construction methods

Construction 
method

Volatility 
forecast

Correlation 
forecast

Return 
forecast Mathematical formula

Equal weight – – –

Equal risk √ – –

Equal risk 
contribution √ √ –

Maximum 
diversification √ √ –

Global minimum 
variance √ √ –

Mean-variance √ √ √

Source: Invesco, BarraOne.

Cash flow (liability) matching
An institution or portfolio manager that is expected to make a sequence of future cash payments is 
faced with a standard liability matching problem. In such a problem there is a well-defined schedule 
of future cash payments that must be made using the principle and coupon payments from a 
collection of fixed income investments. For this type of a problem, we seek to create a portfolio, 
subject to various constraints, that defeases the liabilities at the lowest cost possible. 

Cash flow matching problems are rather straightforward in that they rely on linear optimization 
techniques. Given the universe of available fixed income securities, there is considerable latitude 
in choosing the subset of the available fixed income securities needed to meet the investment goal. 
Higher returns are often associated with lower credit ratings, and so a credit rating representing the 
average (or collective rating) of all of the fixed income securities held in the investment portfolio 
may be part of the optimization (i.e., minimize cost subject to some desired level of credit quality). 
Mathematically, we seek to minimize the following objective function:

where x represents the vector of amounts of each of the possible fixed income securities 
to purchase, and p denotes their respective prices. The rest of the problem concerns the 
formulation of constraints. 
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Foremost, we must be able to make each anticipated liability payment at the scheduled times 
. Additionally, we may be required to hold a minimum amount of certain fixed income 

securities such as government bonds and may similarly be required to hold no more than 
a prescribed amount of higher risk investments such as BBB-rated bonds. This means each 
investment must be constrained by lower and upper bounds. We also wish to maintain a positive 
investment balance at each point in time. This means that cash inflows from coupons, repayments, 
and previous reinvestments should be sufficient to meet cash outflows (liability payments) at any 
point in time. Lastly, the average or collective credit rating of the portfolio may be required to meet 
or exceed some pre-specified minimum rating. All of these portfolio attributes can be defined as 
linear equality or inequality constraints.

First, to meet the liability payments at each time period , we impose the following equality 
constraint

where C is a matrix that represents the cash repayments at each point in time for each security. 
R is a matrix whose entries represent the reinvestment opportunities for positive investment 
balances through time which takes on the form shown below, b represents the balance of the 
investment portfolio at each point in time, and L represents the stream of liability payments.

Second, we require the investment balances all be positive so that b  0 for each time period. 
Third, to meet the requirements of minimum allocations and/or maximum limits to specific 
instruments, we generically require each asset to satisfy explicit lower and upper bounds. 
Finally, we impose a minimum portfolio-level credit rating constraint by converting the 
standard alpha-numeric credit ratings into numeric values. 

Multi-period portfolio construction
Investors with a long-term investment horizon, during which there may be numerous cash inflows 
and outflows, face a multi-period portfolio construction problem. In particular, they must consider 
the totality of the cash flows and their ultimate financial goal in order to determine the best 
investment strategy through time. Such an optimal investment strategy results in a glidepath or 
a sequence of time dependent optimal portfolios in which to invest. The strategy can be used to 
address multiple objectives such as maximizing expected wealth at the end of a 30-year investment 
horizon subject to various inflows and outflows while not exceeding a specific level of uncertainty. 

Modeling such a complex process goes beyond single-period mean-variance optimization and 
requires one to revisit the foundations of investing in uncertain markets. At its core, the modeling 
of portfolios in dynamic markets is an exercise in stochastic analysis. For , and cash 
flows , the portfolio’s wealth evolves from period t to t+1 as a function of the current 
portfolio’s return  and next period’s cash flow through:

Multi-period portfolio construction seeks to maximize the expected terminal wealth 
subject to pre-specified cash flows while penalizing for the variance of terminal wealth . 
Mathematically, we solve the following optimization problem:
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where  are the portfolios over time. In the equation above, the variance multiplied 
by a risk aversion parameter λ. As an example, an investor who is not sensitive to risk will choose 
λ = 0 and will effectively maximize expected wealth. On the opposite end of the spectrum, an 
investor who only cares about risk will choose a very high value of λ and will effectively minimize 
the variance of the terminal wealth. By varying λ in the above formulation we are able to create 
a full efficient frontier.

We conduct the multi-period optimal portfolio construction exercise in the presence of cash flows 
by following the stochastic dynamic programming (SDP) principle. This means, given a financial goal 
of interest such as maximizing the probability distribution’s mean value and minimizing its variance, 
we start the optimization process at the end of the investment horizon at time t = T-1 and work 
backward in time to t = 0. Along the way we solve a series of portfolio optimization problems that 
produce the optimal weights needed to a) achieve the optimal future outcome and b) use these 
optimal weights to solve the problem in the previous time period.

More specifically, starting at time t = T-1 , we create a grid of N points of future wealth  WT
1,… ,W T

N 
as well as a grid of N points of current wealth WT-1

1 ,… ,W T-1
N . We perform a portfolio optimization 

process for each of the current nodes in  WT-1
1 ,… ,W T-1

N   and collect the optimal portfolio weights in 
the corresponding nodes. Once we have solved the problem at all nodes at time t = T-1, we lock 
down the optimal weights at the t = T-1 wealth nodes, namely, any portfolio strategy at t = T-2 will 
use the t = T-1 portfolio weights to reach at t = T portfolio wealth. Once this is determined, we solve 
the same optimization problem for all the nodes at t = T-2 and continue working backwards until 
we reach t = 0 where we are just solving the optimization problem at only one node, i.e., the 
starting portfolio wealth W0. Graphically, we represent the SDP strategy by the tree in Figure 34. 
We note that at each future point in time we can obtain the average of the optimal weights across 
the nodes to give us the average glidepath.

Figure 34: The dynamic programming optimization tree

W1
1 WT−1

1 WT
1

W1
2 WT−1

2 WT
2

W1
N WT−1

N WT
N

W0

Source: Invesco.



Investment risks
The value of investments and any income will fluctuate (this may partly be the result of exchange rate fluctuations) 
and investors may not get back the full amount invested. 

Diversification and asset allocation do not guarantee a profit or eliminate the risk of loss.
	 Invesco Investment Solutions (IIS) develops Capital Market Assumptions (CMAs) that provide long-term estimates for the 
behavior of major asset classes globally. The team is dedicated to designing outcome-oriented, multi-asset portfolios that 
meet the specific goals of investors. The assumptions, which are based on 5- and 10-year investment time horizons, are 
intended to guide these strategic asset class allocations. For each selected asset class, IIS develop assumptions for estimated 
return, estimated standard deviation of return (volatility), and estimated correlation with other asset classes. Estimated 
returns are subject to uncertainty and error, and can be conditional on economic scenarios. In the event a particular scenario 
comes to pass, actual returns could be significantly higher or lower than these estimates.

This information is not intended as a recommendation to invest in a specific asset class or strategy, or as a promise of 
future performance. Refer to the IIS CMA methodology paper for more details.

Important information

All information is sourced from Invesco, unless otherwise stated. All data as of April 15, 2019 and is USD and hedged 
unless otherwise stated. 

This document has been prepared only for those persons to whom Invesco has provided it for informational purposes only. 
This document is not an offering of a financial product and is not intended for and should not be distributed to retail clients 
who are resident in jurisdiction where its distribution is not authorized or is unlawful. Circulation, disclosure, or 
dissemination of all or any part of this document to any person without the consent of Invesco is prohibited. 

This document may contain statements that are not purely historical in nature but are "forward-looking statements," which 
are based on certain assumptions of future events. Forward-looking statements are based on information available on the 
date hereof, and Invesco does not assume any duty to update any forward-looking statement. Actual events may differ 
from those assumed. There can be no assurance that forward-looking statements, including any projected returns, will 
materialize or that actual market conditions and/or performance results will not be materially different or worse than those 
presented. 

The information in this document has been prepared without taking into account any investor’s investment objectives, 
financial situation or particular needs. Before acting on the information the investor should consider its appropriateness 
having regard to their investment objectives, financial situation and needs.

You should note that this information:

• may contain references to amounts which are not in local currencies;
• may contain financial information which is not prepared in accordance with the laws or practices of your country of

residence;
• may not address risks associated with investment in foreign currency denominated investments; and
• does not address local tax issues.

All material presented is compiled from sources believed to be reliable and current, but accuracy cannot be guaranteed.  
Investment involves risk. Please review all financial material carefully before investing. The opinions expressed are based 
on current market conditions and are subject to change without notice. These opinions may differ from those of other 
Invesco investment professionals. 

The distribution and offering of this document in certain jurisdictions may be restricted by law. Persons into whose 
possession this marketing material may come are required to inform themselves about and to comply with any relevant 
restrictions. This does not constitute an offer or solicitation by anyone in any jurisdiction in which such an offer is not 
authorised or to any person to whom it is unlawful to make such an offer or solicitation. 




